FORME RELATIVE DE CONTINUITÉ ET DE COMPACITÉ POUR LES OPÉRATEURS DIFFÉRENTIELS

dc.contributor.authorToufik, HERAIZ
dc.date.accessioned2020-11-18T09:57:45Z
dc.date.available2020-11-18T09:57:45Z
dc.date.issued2020-09
dc.description.abstractIn this thesis whenever, A and B are semi regular operators does not imply, in general, that the product AB is semi regular. We do, however, give conditions under which the above implication is valid. Moreover, we study the essential approximate point spectrum (respectively, the essential defect spectrum) of a sequence of closed linear operators (T_{n})_{n∈N} on Banach space X, and the essential approximate point spectrum (respectively, the essential defect spectrum) of a linear operator T on X, where (T_{n})_{n∈N} converges to T, in the case of convergence in generalized sense as well as in the case of the convergence compactly. And in the last we applied some results of spectral continuity using the v-convergence to 𝟑 × 𝟑 block operator matrix.en_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/20665
dc.publisherUniversité de M'silaen_US
dc.subjectSemi regular operator, convergence in the generalized sense, convergence compactly, v-convergence ملخص:en_US
dc.titleFORME RELATIVE DE CONTINUITÉ ET DE COMPACITÉ POUR LES OPÉRATEURS DIFFÉRENTIELSen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis. T. Heraiz.pdf
Size:
512.25 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: