Generating SQL Queries from Spoken Natural Language

dc.contributor.authorSeghir Birem, Othman
dc.contributor.authorBRAHIMI, Mahmoud: Supervisor
dc.date.accessioned2024-07-15T10:13:12Z
dc.date.available2024-07-15T10:13:12Z
dc.date.issued2024-06
dc.description.abstractIn today's digital era, organizations grapple with the challenge of managing vast datasets, necessitating sophisticated tools for data analysis. While Structured Query Language (SQL) serves as a robust choice for database interaction, its complexity poses barriers, especially for nontechnical users. This project introduces SQUIRE, a model designed to bridge this gap by offering an intuitive Natural Language Database Interface (NLDBI) for SQL relational databases. SQUIRE aims to democratize data access, empowering users to generate diverse SQL queries without extensive SQL knowledge, thereby enhancing flexibility in data retrieval.
dc.identifier.urihttps://dspace.univ-msila.dz/handle/123456789/43777
dc.language.isoen
dc.publisherUniversity of Mohamed Boudiaf, M’sila
dc.subjectSQL
dc.subjectData Base
dc.subjectSQUIRE
dc.subjectNLDBI
dc.subjectPython
dc.titleGenerating SQL Queries from Spoken Natural Language
dc.typeThesis

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
مذكرة ماستر صغير بيرم عثمان.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections