Etude des équations intégrales de Volterra de première espèce en utilisant les techniques des splines

dc.contributor.authorNoui DJAIDJA
dc.date.accessioned2021-03-03T10:39:16Z
dc.date.available2021-03-03T10:39:16Z
dc.date.issued2021
dc.description.abstractas ill-posed problems. Generally a discretization of this equations lead to ill-conditioned linear systems. Moreover a slight perturbation in right hand side lead to enormous change of the solution. In this thesis, we present various regularization methods to obtain a stable solution such as SVD, Tikhonov’s regularization, and Lavrentiev method. Also, we present a new numerical method for solving Volterra linear integral equations of first kind, based on the technical modified Lavrentiev classical method where we find it better than approximation method based on the Taylor expansion, and the spline cubic method. The efficiency of our new numerical method is tested by solving some examples for which the exact solution is known. This allows us to estimate the exactness of our numerical results.en_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/23986
dc.publisherUniversité de M'silaen_US
dc.subjectFirst-kind integral equations of Volterra, ill-posed problem, numerical quadrature, Tikhonov’s regularization, Lavrentiev method, splines functions.en_US
dc.titleEtude des équations intégrales de Volterra de première espèce en utilisant les techniques des splinesen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thèse Doctorat Noui DJAIDJA Univ-M'sila .pdf
Size:
544.03 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: