Méthodes Computationnelles pour la Résolution des Équations Intégrales Non Linéaires

dc.contributor.authorGUECHI, Somia
dc.date.accessioned2018-03-14T15:55:48Z
dc.date.available2018-03-14T15:55:48Z
dc.date.issued2017-06-29
dc.description.abstractMany problems which arise in mathematical physics, engineering, biology, economics,…etc., lead to mathematical models described by nonlinear integral equations. The aim of this research is to find the solution of nonlinear Volterra and Fredholm integral equation by using analytical and numerical methods such as the degenerate kernel method, the successive approximation method, the projection method, and the Nyström method. Also, we applied the new combination of Newton-Kantorovich method with modified Simpson method. Most of them transform the nonlinear integral equation into a system of linear or nonlinear algebraic equations. Finally, numerical examples are presented which demonstrate the robustness of the expansion numerical methods in determining solutions.en_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/3631
dc.language.isoenen_US
dc.publisherUniversité de M'silaen_US
dc.subjectNonlinear integral equations, fixed point problem, degenerate kernel method, successive approximation method, projection method, Nyström method, Newton-Kantorovich methoden_US
dc.titleMéthodes Computationnelles pour la Résolution des Équations Intégrales Non Linéairesen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pdf thèse 29 june2017.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: