PRINCIPAL FUZZY IDEALS AND FILTERS ON A LATTICE

dc.contributor.authorBenelbar, Khawla
dc.contributor.authorSupervisor: Milles, Soheyb
dc.date.accessioned2022-07-25T12:11:06Z
dc.date.available2022-07-25T12:11:06Z
dc.date.issued2022-06-10
dc.description.abstract,Ty AbR T wm ,TkbJ Abstract In this work, we generalize the notion of principal ideal (resp. filter) on a lattice to the setting of fuzzy sets and investigate their various characterizations and properties. More specifically, we show that any principal fuzzy ideal (resp. filter) coincides with a fuzzy down-set (resp. up-set) generated by a fuzzy singleton. Afterwards, for a given fuzzy set, we introduce two fuzzy sets : its fuzzy down-set and up-set, and we investigaen_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/30961
dc.language.isoenen_US
dc.publisherUniversity of m'silaen_US
dc.subjectsting properties. Key words : Lattice, fuzzy set, Principal fuzzen_US
dc.titlePRINCIPAL FUZZY IDEALS AND FILTERS ON A LATTICEen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khawla-1.pdf
Size:
496.55 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections