Chouder, RafaaDirigé par: Benhamidouche, Nouredine2023-05-032023-05-032012-06-10http://dspace.univ-msila.dz:8080//xmlui/handle/123456789/36579Dans ce mémoire, nous avons examiné quelques modèles dans la théorie mathématique du traitement d images. En particulier, nous avons analysé deux types de ltrage : le ltrage linéaire et le ltrage non linéaire. Il semblerait que le ltrage par la di¤usion non linéaire présenté par Barenblett et Vazquez [BV], présente des meilleurs résultats pour les images naturelles, en e¤et, le bruit est éliminé et les contours sont bien conservés. Nous avons établi le bien-posé du problème aux frontières libres qui représente une version unidimensionnelle du modèle pour le perfectionnement du contour d image. Les ré- sultats s appliquent à une grande classe d équations, qui élargit les résultats obtenus dans [B01] et [MS]. Nous avons e¤ectué une classi cation des solutions et de leurs propriétés selon les propriétés de la fonction constitutive. Nous avons utilisé la théorie d équations de di¤usion non linéaires. Ces équations sont utilisées typiquement en décrivant des processus de di¤usion de masse ou de propagation thermique. Ici elles s apparaissent dans le traitement d images. L analyse est exécutée techniquement au moyen d une série de transformations remar- quables qui mènent au problème conjugué, il est plus facile de l analyser.frContour d'image et diffusion non linéaireThesis