Bouras, Mounir2018-05-212018-05-212018http://dspace.univ-msila.dz:8080//xmlui/handle/123456789/4428The TE-TM mode conversion is an important requirement for magneto-optical waveguide devices. In this work, we report on the theoretical study of magneto-optical waveguides on an ion-exchanged glass waveguide. This study explores the possibility to realize a mode converter TE-TM on a hybrid structure. This hybrid device is made by coating a SiO2/ZrO2 layer doped with magnetic nanoparticles on an ion-exchanged glass waveguide. It has been analyzed by means of a beam propagation method for numerical solution of the full-vectorial wave equation. We have also used the transparent boundary condition. The mode converters TE-TM based on the Faraday rotation and modal birefringence are then numerically simulated. Depending on the increasing of nanoparticles volume fraction in the SiO2/ZrO2 layer and on decreasing the modal birefringence of the hybrid structure, the TE-TM conversion efficiency varies from several percent to several tens of percent. © 2017 Published by Elsevier GmbHenKeywords: Magneto optic Ion-exchanged glass Hybrid waveguide Isolator opticsEfficient magneto-optical TE/TM mode converter in a hybrid structure made with a SiO2/ZrO2 layer coated on an ion-exchanged glass waveguideArticle