Transformation Semigroups and State Machines

dc.contributor.authorGhadbane, Nacer
dc.date.accessioned2019-05-14T08:08:06Z
dc.date.available2019-05-14T08:08:06Z
dc.date.issued2019
dc.description.abstractA transformation semigroup is a pair (Q; S) consisting of a finite set Q, a finie semigroup S and a semigroup action λ : Q X S⟶ Q, (q, s ⟼ s (q) which means : (i) ∀q Q, ∀s, t S : st (q) = s (t (q)) , (ii) ∀s, t S,∀q Q, s (q) = t (q)⟹ s = t. A state machine or a semiautomation is an ordered triple M = (Q, Σ, F ), where Q and are finite sets and F : Q X Σ⟶ Q is a partial function. In this paper, we give the construction of state machines associate a direct product, the cascade product and wreath product of transformations semigroups.en_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/13957
dc.publisherUniversité de M'silaen_US
dc.subjectsemigroup, semigroup action, morphism semigroup, transformation semi-group, state machine.en_US
dc.titleTransformation Semigroups and State Machinesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ID80_GHADBANE_DEC2018_CR.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections