Natural convective heat transfer from a heated horizontal elliptical cylinder to its coaxial square enclosure

Loading...
Thumbnail Image

Date

2018-12

Journal Title

Journal ISSN

Volume Title

Publisher

Université de M'sila

Abstract

A numerical study of the natural convection of laminar heat transfer in the stationary state in a horizontal annular space between a heated square inner cylinder and a cold elliptical outer cylinder was investigated. This annular space is traversed by a Newtonian and incompressible fluid. The Prandtl number is set to 0.71 (air case) for different Rayleigh numbers. The governing equations of the problem were solved numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq approximation. The inner and outer surfaces are isothermal. The study was performed for Rayleigh numbers ranging from 1.3 × 103 to 5.5× 105. Particularly, we have studied the effects of different thermal Rayleigh numbers on natural phenomenon convection. The results were presented in the form of isotherms, streamlines, and local and average Nusselt numbers. The purpose of this study is to observe the influence of the thermal Rayleigh number on the structure of the flow and distribution of the temperature.

Description

Keywords

natural convection, thermal Rayleigh number, Boussinesq approximation, elliptic-square

Citation

Collections