DSpace Repository

Etude des équations intégrales de Volterra de première espèce en utilisant les techniques des splines

Show simple item record

dc.contributor.author Noui DJAIDJA
dc.date.accessioned 2021-03-03T10:39:16Z
dc.date.available 2021-03-03T10:39:16Z
dc.date.issued 2021
dc.identifier.uri http://dspace.univ-msila.dz:8080//xmlui/handle/123456789/23986
dc.description.abstract as ill-posed problems. Generally a discretization of this equations lead to ill-conditioned linear systems. Moreover a slight perturbation in right hand side lead to enormous change of the solution. In this thesis, we present various regularization methods to obtain a stable solution such as SVD, Tikhonov’s regularization, and Lavrentiev method. Also, we present a new numerical method for solving Volterra linear integral equations of first kind, based on the technical modified Lavrentiev classical method where we find it better than approximation method based on the Taylor expansion, and the spline cubic method. The efficiency of our new numerical method is tested by solving some examples for which the exact solution is known. This allows us to estimate the exactness of our numerical results. en_US
dc.publisher Université de M'sila en_US
dc.subject First-kind integral equations of Volterra, ill-posed problem, numerical quadrature, Tikhonov’s regularization, Lavrentiev method, splines functions. en_US
dc.title Etude des équations intégrales de Volterra de première espèce en utilisant les techniques des splines en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account