DSpace Repository

FORME RELATIVE DE CONTINUITÉ ET DE COMPACITÉ POUR LES OPÉRATEURS DIFFÉRENTIELS

Show simple item record

dc.contributor.author Toufik, HERAIZ
dc.date.accessioned 2020-11-18T09:57:45Z
dc.date.available 2020-11-18T09:57:45Z
dc.date.issued 2020-09
dc.identifier.uri http://dspace.univ-msila.dz:8080//xmlui/handle/123456789/20665
dc.description.abstract In this thesis whenever, A and B are semi regular operators does not imply, in general, that the product AB is semi regular. We do, however, give conditions under which the above implication is valid. Moreover, we study the essential approximate point spectrum (respectively, the essential defect spectrum) of a sequence of closed linear operators (T_{n})_{n∈N} on Banach space X, and the essential approximate point spectrum (respectively, the essential defect spectrum) of a linear operator T on X, where (T_{n})_{n∈N} converges to T, in the case of convergence in generalized sense as well as in the case of the convergence compactly. And in the last we applied some results of spectral continuity using the v-convergence to 𝟑 × 𝟑 block operator matrix. en_US
dc.publisher Université de M'sila en_US
dc.subject Semi regular operator, convergence in the generalized sense, convergence compactly, v-convergence ملخص: en_US
dc.title FORME RELATIVE DE CONTINUITÉ ET DE COMPACITÉ POUR LES OPÉRATEURS DIFFÉRENTIELS en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account