

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTERY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

UNIVERSITY OFMOHAMED BOUDIAF - M’SILA

Dissertation submitted in partial fulfillment of the requirements for
The degree of MASTER

By: TAKIA HADJIRA

SUBJECT

 Publicly defended before the jury composed of:

 University of M’sila Chair

Mr. MEFETAH LAKHAL University of M’sila Supervisor

 University of M’sila Examiner

Academic Year: 2017/2018

Ontology Based Relational Database Access

FACULTY: Mathematics and Computer
Science

DEPARTMENT: Computer Science

N°:……………………………………

DOMAIN: Mathematics and Computer Science

Branch: Computer Science

option: SIGL

Acknowledgements

 This work could not have reached fruition without the
unflagging assistance and participation of so many people whom I
would never thank enough for the huge contribution that made
this work what it is now.

 First and foremost, heartfelt gratitude and praises go to the
Almighty Allah who guided me through and through.

 I would like to thank profoundly Ms M.Lakhal for his
scientific guidance and corrections, suggestions and advice,
pertinent criticism and pragmatism, and particularly for his hard
work and patience. I am very grateful to him, for without his help
an important part of this work would have been missed.

 My sincere appreciation needs to be addressed to the honorable

board of examiners, whose insightful remarks during the viva will

certainly enrich this work.

Plan
GENERAL INTRODUCTION ... Erreur ! Signet non défini.

1. Introduction : ... 1

2. Architecture of semantic web: ... 2

2.1. Unicode: ... 2

2.2. URI: .. 2

2.3. Extensible Markup Language (XML): ... 4

2.4. The Resource Description Framework (RDF) and RDF Schema: ... 5

2.5. Ontology Vocabulary: .. 7

2.6. Logic and Proof: ... 7

2.7. Trust: .. 7

3. The goal of semantic web: ... 8

4. Ontologies: .. 8

5. Components of Ontology: ... 9

6. Use of ontologies: .. 10

7. The Web Ontology Language Owl: .. 11

7.1. RDF/XML: ... 11

7.2. OWL Full: .. 12

7.3. OWL DL: ... 12

7.4. OWL Lite: .. 13

7.4.1.OWL 2 EL: ... 14

7.4.2. OWL 2 QL: ... 14

7.4.3.OWL 2 RL: ... 14

8. Why are ontologies important? : ... 15

9. CONCLUSIONS: .. 15

1. INTRODUCTION: .. 18

2. Definition of the basic formalism: ... 18

2.1. The TBox : ... 19

2.2. The ABox: .. 20

3. The basic description formalism : ... 21

4. Semantics : .. 22

4.1. Interpretation: ... 22

4.1.1. The semantics of TBox Axiomes: ... 23

4.1.2. Semantics of ABox assertion: ... 23

5. DESCRIPTION LOGICS, A BIG FAMILY OF LOGICS : ... 23

5.1. The Basic Description Logics ALC and ALCH: .. 24

5.2. Expressive and Lightweight DLs: .. 26

5.3. The SH Family: .. 27

5.4. The SR Family: .. 29

6. Reasoning Services: .. 30

6.1. Reasoning services of TBox Axiomes : .. 31

6.2. Reasoning services of ABox assertion: .. 31

7. Reasoning Techniques:.. 31

8. FOL: .. 32

8.1. The table for FOL: .. 32

9. DL-Lite: ... 33

10. DAML+OIL and Description Logics: ... 33

11. Conclusion: .. 34

1. Introduction: .. 35

2. Ontology-based data access framework: ... 35

3. Mapping between the data and the ontology: ... 36

4. Query rewriting: .. 38

4.1. Query Rewriting Algorithms: ... 38

4.1.1. The algorithm 1: .. 39

4.1.2. The algorithm 2: .. 39

4.1.3. Most General Unifier:.. 41

5. Query answering: .. 42

6. Conception: ... 42

6.1. Class diagram in the Unified Modeling Language (UML): ... 42

6.2. Class diagram for application: .. 43

7. Use case for application: ... 43

7.1. Use case diagram components: .. 44

7.2. Use case diagram for application: .. 44

8. Diagrame sequence: .. 45

8.1. Diagrame sequence for application: ... 45

9. Example about University diagram class: .. 46

9.1. logic description for University: ... 46

9.2. Class diagram for university: ... 48

10. Development environment: ... 48

11. Implementation:... 49

12. Conclusion: .. 50

GENERAL CONCLUSION .. 50

Referances: .. 51

Figures Table:

1.Semantic Web architecture……………………………………………………………………………………….3

2.RDF triple (in graph representation) describing Joe Smith - "Joe has homepage identifiedby URI

http://www.example.org/~joe/".. ...7

3.RDF triple (in graph representation) describing Joe Smith - "Joe has family name Smith"…………………….7

4.Components of Ontology………………………………………………………………………………..……...11

5.Classification according to expression area of OWL…………………………………………………………….12

6.Architecture of a knowledge representation system based on Description Logics………………………………18

7.DL-based TBOX inference…………………………………………………………………………………….…19

8.Axiom of OWL………………………………………………………………………………………………….20

9.OWL CLASS CONSTRUCTOR…………………………………………………………………………….….20

10.DL-based ABox inference…………………………….……………………………………………………….35

11.Ontology Based Data Access (OBDA)……………………………………………………………………….. 35

 12.Class diagram for OBDA application ………………………………………………………………………...36

 13.Use case for OBDA application ……………………………………………………………………………….37

 14.Diagrame sequence for OBDA application…………………………………………………………………… 38

 15.Diagrame sequence for OBDA application …………………………………………………………………... 39

 16.Class diagram for university applied in the OBDA application ……………………………………………….40

 17.OBDA application before rewriting and answering query …………………………………………………….41

 18.OBDA application after rewriting and answering query ……………………………………………………...42

Table list

 Table 1:Translation between interpretation and DL…………………..……………………………….…………..1

 Table 2: Some expressive DLs between ALC and SHOIQ………………………………………….…………….2

Table 3: Translation between DL and FOL…………………..………………………………………………….…3

GENERAL INTRODUCTION

 In this thesis we will teak a new paradigm called Ontology-based data access (OBDA)

which facilitates access to relational data, realized by linking data sources to ontology by

means of declarative mappings. In the first chapter we talk about semantic web which is

actually an extension of the current one in that it represents information more meaningfully

for humans and computers alike. It enables the description of contents and services in

machine-readable form, and enables annotating, discovering, publishing, advertising and

composing services to be automated. It was developed based on Ontology, which is

considered as the backbone of the Semantic Web. In other words, the current Web is

transformed from being machine-readable to machine-understandable. In fact, Ontology is a

key technique with which to annotate semantics and provide a common, comprehensible

foundation for resources on the Semantic Web. Moreover, Ontology can provide a common

vocabulary, a grammar for publishing data, and can supply a semantic description of data

which can be used to preserve the Ontologies and keep them ready for inference. This chapter

provides Architecture of semantic web and Components of Ontology,The Web Ontology

Language Owl and defines the importance of ontologies . In the second chapter we talk about

description logic , a family of logic-based knowledge representation languages that can be

used to represent the terminological knowledge of an application domain in a structured way.

 It first it gives a short introduction of the ideas underlying Description Logics. Then it

introduces syntax and semantics, covering the basic constructors can be used to build

knowledge bases and I talked about a Big Family of description Logics. Finally, we touched

DLLite which is forms the basis of OWL 2 QL that is latter is to be the language of choice for

applications that use very large amounts of data and where query answering is the most

important reasoning task.

 In the last chapter we will talk about OBDA which as we previously knew it that is In

recent years, ontology-based data access (OBDA) has emerged as a promising and

challenging application of ontologies. The idea is to enrich instance data with a ‘semantic

layer’ in the form of an ontology, used as an interface for querying and to derive additional

answers. A central research problem in this area is to design query answering engines that can

deal with sufficiently expressive ontology languages yet scale to large data sets. The most

popular ontology languages that have been considered for OBDA include the three profiles

OWL2 RL, OWL2 QL, and OWL2 EL, as well as various description logics and data-log

variants related to these profiles where OBDA system rewrites ontology and query to new

data-log query for answering this new query with it we talk about rewriting query and

algorithm the rewriting and the finally I talked about answering query .

Chapter 1:

The Semantic Web

1

1. Introduction

 The Semantic Web is an intelligent incarnation and advancement in World Wide Web to

collect, manipulate and annotate the information by providing categorization[1]on a web-page

and reprocesses it so that other machines including computers can understand the information.

Semantic Web was part of Berners-Lee’s vision for the World Wide Web from the beginning

(Berners-Lee ., 2001, Berners-Lee, 2003).

 where he sees it as being an extension of the current World-Wide Web that will bring a

common structure to the content of Web pages, thereby providing such content with meaning

which will allow external software agents to carry out sophisticated tasks on behalf of the

reader or user and, as such, promote a greater degree of cooperation between humans and

computers. In so doing, a new age of computing will be ushered in where machines are better

able to process and "understand" the data.

This vision of a Semantic Web can therefore be viewed from three different perspectives:

 a type of universal library which can readily be accessed and used by humans in their

day-to-day information acquisition;

 the backbone for software or computational agents to use autonomously in order to

perform particular activities on behalf of their human counterparts;

 a method for federating particular knowledge bases and databases to perform

anticipated tasks for humans and their agents (Marshall and Shipman). [2]

 By using the descriptive technologies Resource Description Framework (RDF) and Web

Ontology Language(OWL), and the data-centric, customizable Extensible Mark-up Language

(XML).These technologies are combined in order to provide descriptions that supplement or

replace the content of Web documents. Thus, content may manifest as descriptive data stored

in Web-accessible databases, or as mark-up within documents (particularly, in Extensible

HTML (XHTML) interspersed with XML, or, more often, purely in XML, with

layout/rendering cues stored separately). The machine-readable descriptions enable content

managers to add meaning to the content, i.e. to describe the structure of the knowledge we

have about that content. In this way, a machine can process knowledge itself, instead of text,

using processes similar to human deductive reasoning and inference, thereby obtaining more

2

meaningful results and facilitating automated information gathering and research by

computers.[3]

2. Architecture of semantic web:

Figure 1 illustrates the architecture of the Semantic Web:

Figure 1:Semantic Web architecture.

2.1. Unicode:

 Unicode provides a unique number for every character, independently of the underlying

platform, program, or language. Before the creation of Unicode, there were various different

encoding systems. The diverse encoding made the manipulation of data complex. Any given

computer needed to support many different encodings. There was always the risk of encoding

conflict, since two encodings could use the same number for two different characters, or use

different numbers for the same character. Examples of older and well known encoding

systems include ASCII and EBCDIC.[4]

• ASCII – 7 bit, 128 characters (a-z, A-Z, 0-9, punctuation)

• Extension code pages – 128 chars (ß, Ä, ñ, ø, Š, etc.)[4]

2.2. URI:

 A universal resource identifier (URI) is a formatted string that serves as a means of

identifying abstract or physical resource. A URI can be further classified as a locator, a name,

3

or both. Uniform resource locator (URL) refers to the subset of URI that identifies resources

via a representation of their primary access mechanism. An uniform resource name (URN)

refers to the subset of URI that is required to remain globally unique and persistent even when

the resource ceases to exist or becomes unavailable. For example:[4]

–http://www.ietf.org/rfc/rfc3986.txt

–mailto:John.Doe@example.com

–news:comp.infosystems.www.servers.unix

– telnet://melvyl.ucop.edu/

The URL http://dme.uma.pt/jcardoso/index.htm identifies the location from where a Web

page can be retrieved.

• The generic form of any URI is scheme: [//authority] [/path] [?query] [#fragid]

 – The scheme distinguishes different kinds of URIs, The scheme lays out the concrete

syntax and any associated protocols for the URI. Schemes are case-insensitive and are

followed by a colon. Ideally, URI schemes should be registered with the Internet Assigned

Numbers Authority (IANA)Examples of popular schemes include http, https, ftp ,mailto, file

,data and irc, although nonregistered schemes can also be used.

 – Authority normally identifies a server , An authority component is made up of multiple

parts: an optional authentication section, a host -- consisting of either a registered name or an

IP address -- and an optional port number. The authentication section contains the username

and password, which are separated by a colon and followed by the symbol for at (@). After

the @ comes the hostname, which is in turn followed by a colon and then a port number.

– Path normally identifies a directory and a file, The path contains data, is notated by a

sequence of segments separated by slashes. The path must begin with a single slash if an

authority part was present. It may also begin with a single slash even if there is no authority

part, but it cannot begin with a double slash. Keep in mind that while this part of the syntax

may closely resemble a particular file path, it does not always imply a relation to that file

system path.

 – Query adds extra parameters ,it contains a string of nonhierarchical data. Although the

syntax is not well-defined, it is most often a sequence of attribute value pairs separated by a

4

delimiter, such as an ampersand or a semicolon. The query is separated from the preceding

part by a question mark.

– Fragment ID identifies a secondary resource, it contains a fragment identifier that provides

direction to a secondary resource. For example, if the primary resource is an HTML

document, the fragment is often an ID attribute of a specific element of that document. If the

fragment identifies a certain section of an article identified by the rest of the URI, a Web

browser will scroll this particular element into view. The fragment is separated from the

preceding part by a hash (#).[51]

2.3. Extensible Markup Language (XML):

 Is a markup language, which means that it is machine-readable and has its own format. It

is widely known in the WWW community because it has a flexible text format and was

designed to describe data and to meet the challenges of large-scale e-business and electronic

publishing; it plays an important role in exchanging different types of data on the Web. In

fact, it is the basis of a rapidly growing number of software development activities. Each

document starts with a namespace declaration using XML Namespace.[4]

Syntax:

<name>contents</name>

 –<name> : is called the opening tag

–</name> : is called the closing tag

 • Examples for xml:

<gender>Female</gender>

<story>Once upon a time there was…. </story>

• Element names case-sensitive

Name/value pairs, part of element contents

• Syntax <name attribute_name="attribute_value">contents</name>

 • Values surrounded by single or double quotes

5

 • Example

<temperature unit="F">64</temperature>

<swearword language='fr'>con</swearword>

Empty element: <name ></name>

 • This can be shortened:<name/>

 • Empty elements may have attributes

 • Example<grad value=’A’/>

XML namespace and XML schema definitions makes sure that there is a common syntax

used in the semantic Web. XML namespaces allow specifying different markup vocabularies

in one XML document. XML schema serves for expressing schema definition of a particular

XML document.[6]

Example for xmlns:

Use “xmlns” attribute

Named prefix :

<a:foo xmlns:a=‘http://example.com/NS’/>

Default prefix :

<foo xmlns=‘http://example.com/NS’/>

2.4.The Resource Description Framework (RDF) and RDF Schema:

 On top of XML is RDF that is a framework for using and representing metadata and

describing the semantics of information about resources on the Web in a machine-accessible

way. It uses URIs to identify Web resources and to describe the relations between these

resources, using a graph model. While describing classes of resources and the properties

between them, using RDF Schema (which is a simple modeling language), it also provides a

simple reasoning framework for inferring types of resources.

 RDF Schema (RDFS) defines the vocabulary of RDF model. It provides a mechanism to

describe domain-specific properties and classes of resources to which those properties can be

6

applied, using a set of basic modeling primitives (class, subclass-of, property, subproperty-of,

domain, range, type). However, RDFS is rather simple and it still does not provide exact

semantics of a domain.[8]

Information is represented by triples subject-predicate-object in RDF. An example of a triple

is shown in the figure below. It says that "Joe Smith has homepage

http://www.example.org/~joe". All elements of this triple are resources defined by URI. The

first resource http://www.example.org/~joe/contact.rdf#joesmith(subject) is intended to

identify Joe Smith. Note that it precisely defines how to get to a RDF document as well as

how to get the joesmith RDF node in it. The second resource

http://xmlns.com/foaf/0.1/homepage (predicate) is the predicate homepage from a FOAF

(Friend-of-a-friend) vocabulary. The last resource (object) is Joe's homepage

http://www.example.org/~joe/.

Figure 2:RDF triple (in graph representation) describing Joe Smith - "Joe has homepage

identified by URI http://www.example.org/~joe/"

 All of the elements of the triple are resources with the exception of the last element, object,

that can be also a literal. Literal in the RDF sense is a constant string value such as string or

number. Literals can be either plain literals (without type) or typed literals typed using XML

Datatypes. An example of literal usage is illustrated in the triple shown in the figure below.

Figure 3:RDF triple (in graph representation) describing Joe Smith - "Joe has family name

Smith"[9].

7

2.5.Ontology Vocabulary:

 Ontology comprises a set of knowledge terms, including the vocabulary, the semantic

interconnections, simple rules of inference and logic for some particular topic. Ontologies

applied to the Web are creating the semantic Web. Ontologies facilitate knowledge sharing

and provide reusable Web contents, Web services, and applications. Few of the ontology

languages are DAML (DARPA Agent Markup Language), OIL (Ontology Interference

Layer) and OWL (Web Ontology Language). OWL is developed starting from description

logic and DAML+OIL. OWL is a set of XML elements and attributes, with well-defined

meaning, that are used to define terms and their relationships (e.g. Class, equivalentProperty,

intersectionOF, unionOF, etc.). OWL elements extend the set of RDF and RDFS elements,

and the OWL namespace is used to denote OWL encoding. OWL comes in three species –

OWL Lite for taxonomies and simple constraints, OWL DL for full description logic support

and OWL Full for maximum expressiveness and syntactic freedom of RDF. OWL DL is

widely used for ontology representation. In practice, ontologies are often developed using

integrated, graphical, ontology authoring tools, such as Protégé, OILed and OntoEdit. Protégé

facilitates extensible infrastructure and allows an easy construction of knowledge rich domain

ontologies[4].

Ex :

Ontology: <http://example.org/tea.owl>

Class: Tea

2.6. Logic and Proof:

 The logic layer consists of logic-based rules that can serve as extensions of, or alternatives

to, description logic based ontology languages; and can be used to develop declarative

systems on top of (using) ontologies. The logic layer is accompanied by the proof layer which

contains all the necessary inference mechanisms that manipulate the rules of the logic layer

and, furthermore, explicitly expose the proofs of inferences in order to generate explanations

between proof systems, agents and humans. [52]

2.7. Trust:

 Is the final layer of the Semantic Web. This component concerns the trustworthiness of

the information on the Web in order to provide an assurance of its quality. [5]

8

3.The goal of semantic web:

 The goal of semantic web research is to allow the vast range of web-accessible

information and services to be more effectively exploited by both humans and automated

tools. To facilitate this process, RDF and OWL have been developed as standard formats for

the sharing and integration of data and knowledge the latter in the form of rich conceptual

schemas called ontologies. These languages, and the tools developed to support them, have

rapidly become standards for ontology development and deployment; they are increasingly

used, not only in research labs, but in large scale IT(Information Technologies) projects.

Although many research and development challenges still remain, these “semantic web

technologies” are already starting to exert a major influence on the development of

information technology.[6]

4.Ontologies:

 Ontology : all the objects recognized as existing in the domain. To build an ontology, it is

also to decide on the way of being and to exist objects. To continue towards a definition of

ontology, it seems to us essential to remind that the works on the ontologies are developed in

an IT context that is the case, for instance, for Engineering of knowledge, Artificial

intelligence or, more specifically here, the context of Semantics Web where the final goal is to

specify an IT artifact. In this context, the ontology becomes then a model of the existing

objects which makes a reference to it through concepts of the domain.

 The ontology is a theory on the representation of the knowledge. As indicated in 2000, the

ontology “defines the kinds of things that exist in the application domain”. It is by this theory

that it unifies in the domain of the computing. The ontology “is a formal, explicit

specification of a shared conceptualization” (Gruber, 1993). For the IT specialist of semantic

web, the ontology is a consensual model, because the conceptualization is shared and brings

then to build a linguistic specification with the vocabulary RDF/RDFS and the language

OWL. In the semiotic perspective, conceptualization according to Gruber relates to the

domain of the speech because it is the abstraction. The domain of the speech takes place of

the referent. In semiotics, we shall say that the ontology symbolizes the conceptualization, the

terms, the notions and the relations which are conceptualized. [7]

9

 Ontologies : play an important role in achieving interoperability across organizations and on

the Semantic Web , because they aim to capture domain knowledge and their rule is to create

semantics explicitly in a generic way, providing the basis for agreement within a domain.

Ontology is used to enable interoperation between Web applications from different areas or

from different views on one area. For that reason, it is necessary to establish mappings among

concepts of different ontologies to capture the semantic correspondence between them.

 An ontology is a specification of a conceptualization .The ontology defines a set of

representational are typically classes (concepts), attributes (or properties), and relationships

(or relations among class members). [7]

 A concept can be an object of any sort: person, car, can describe an activity or state:

swimming, Work ,Exam. an represent abstract concepts like time or value. There is no strict

restriction what can express as a concept in our ontology.

 A relationship in an ontology represents a way in which two concepts, two things, can be

connected to each other :Train needs Rails .characteristics of objects: Fatma is Woman.

5.Components of Ontology:

 Contemporary ontologies share many structural similarities, regardless of the language in

which they are expressed. Most ontology describes individuals (instances), classes (concepts),

attributes, and relations. Common components of ontologies include:

Individuals: Elements represented by individuals or instances are terms not included in the

class. 'Person' is a class, but 'John Smith' is an instance.

 Classes: Sets, collections, concepts, classes in programming, types of objects, or kinds of

things.

Relations: Elements represented by relationships or attributes are used to describe the

relationship between two terms.

Function terms: A function is a special type of relationship, meaning that a term has a

restriction on its number in relation to other terms. For example, 'mother' has a relationship

with the concept of 'woman', one of the concepts of 'people'. A function can be referenced to a

slot if it is applicable to only two terms.

10

Restrictions: Formally stated descriptions of what must be true in order for some assertion to

be accepted as input.

Axioms: The axiom is a sentence composed of First Order Logic, which is found to be "true"

and is not proven. Structurally, you can refer to a statement that can not be expressed as a slot

or value. Axiom must use prefix notation. '=>' Is a logical implementation, '<=>' means

logically equivalent, and there are notations that can express connection, separation, negation,

Variables must begin with '?' And free variables are assumed to be quantified. [1]

Figure 4: Components of Ontology.

6. Use of ontologies:
 In A knowledge in computer systems is thought of as something that is explicitly

represented and operated on by inference processes .Any software that does anything useful

cannot be written without a commitment to a model of the relevant world—to entities,

properties, and relations in that world. Data structures and procedures implicitly or explicitly

make commitments to a domain ontology.[8]

 Information-retrieval systems, digital libraries, integration of heterogeneous information

sources, and Internet search engines need domain ontologies to organize information and

direct the search processes.[8]

 For example, a search engine has categories and subcategories that help organize the

search. The search-engine community commonly refers to these categories and subcategories

as ontologies. Object-oriented design of software systems similarly depends on an appropriate

domain ontology. Object systems representing a useful analysis of a domain can often be

reused for a different application program. Object systems and ontologies emphasize different

aspects.[8]

11

 As information systems model large knowledge domains, domain ontologies will become

as important in general software systems as in many areas of AI. In AI, while knowledge

representation pervades the entire field. [8]

7. The Web Ontology Language Owl:

 OWL Web Ontology Language is designed for use by applications that need to process the

content of information instead of just presenting information to humans. Although already

recognizable as an ontology language, the capabilities of RDF and RDF Schema (RDF-S) are

rather limited: they do not, for example, include the ability to describe cardinality constraints,

a feature found in most conceptual modeling languages, or to describe even a simple

conjunction of classes. OWL facilitates greater machine interpretability of Web content by

providing additional vocabulary along with a formal semantics OWL has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full as shown below(figure 5).This

layering is motivated by different requirements that different users and developers have for a

Web ontology language:

Figure5:Classification according to expression area of OWL. [50]

7.1.RDF/XML:

 Is the most common and recommended syntax for OWL 2 documents, which are intended

for those users primarily needing a classification hierarchy with typing of properties and

meta-modeling facilities; The most elementary building block of RDF(S) is a class, which

defines a group of individuals that belong together because they share some properties. The

following states that an instance e belongs to a class c:

����������(�����(�)) (“����������”)

12

The second elementary statement of RDF(S) is the subsumption relation between classes subClassOf:

����������(����)

In RDF, instances are related to other instances through properties:

In��������(�������(���))

 Properties are characterized by their domain and range:

��������������(�������(��)�����(��))

 just as with classes, properties are organised in a subsumption hierarchy:

�������������(�� ∶ ���� ∶ ��)

 RDF and RDFS allow the representation of some ontological knowledge. The main

modeling primitives of RDF/RDFS concern the organization of vocabularies in typed

hierarchies: subclass and subproperty relationships, domain and range restrictions, and

instances of classes.

7.2.OWL Full:

 The entire language is called OWL Full, and uses all the OWL languages primitives . It

also allows to combine these primitives in arbitrary ways with RDF and RDF Schema. This

includes the possibility (also present in RDF) to change the meaning of the pre-defined (RDF

or OWL) primitives, by applying the language primitives to each other. For example, in OWL

Full we could impose a cardinality constraint on the class of all classes, essentially limiting

the number of classes that can be described in any ontology. The advantage of OWL Full is

that it is fully upward compatible with RDF, both syntactically and semantically: any legal

RDF document is also a legal OWL Full document, and any valid RDF/RDF Schema

conclusion is also a valid OWL Full conclusion.

 The disadvantage of OWL Full is the language has become so powerful as to be

undecided, dashing any hope of complete (let alone efficient) reasoning support.

7.3.OWL DL:

 In order to regain computational efficiency, OWL DL (short for: Description Logic) is a

sublanguage of OWL Full which restricts the way in which the constructors from OWL and

13

RDF can be used. but roughly this amounts to disallowing application of OWL’s constructor’s

to each other, and thus ensuring that the language corresponds to a well studied description

logic. The advantage of this is that it permits efficient reasoning support. The disadvantage is

that we lose full compatibility with RDF: an RDF document will in general have to be

extended in some ways and restricted in others before it is a legal OWL DL document.

Conversely, every legal OWL DL document is still a legal RDF document.

It is often useful to say that two classes are disjoint:

���������������(����)

OWL DL allows arbitrary Boolean algebraic expressions on either side of an equality of

subsumption relation:

����������(���������(����))

ci is not subsumed by either cj or ck, but is subsumed by their union. Similarly

�����������������(����������������(����))

OWL DL completes the Boolean algebra by providing a construct for negation:

������������(����)

7.4.OWL Lite:

 An ever further restriction limits OWL DL to a subset of the language constructors. For

example, OWL Lite excludes enumerated classes, disjointed statements and arbitrary

cardinality (among others). The advantage of this is a language that is both easier to grasp (for

users) and easier to implement (for tool builders). The disadvantage is of course a restricted

expressivity.

equality are possible in OWL Lite:

��������������(����)

 through a pair of mutual Subclassof or SubPropertyOf statements), this can be done

directly in OWL Lite:

�����������������(����) ��������������������(����)

 inequality must be explicitly stated, as:

14

��������������������(����)

OWL Lite provides an abbreviated form:

��������������������(�� . . . ��)

 The relationship between such pairs of properties is established by stating:

��������������(�����������(��))

 Other vocabulary in OWL Lite (TransitiveProperty and SymmetricProperty are modifying

a single property, rather then establishing a relation between two properties: [9]

��������������(�� ∶ ������������)

��������������(�� ∶ �����������)

7.4.1.OWL 2 EL:

 Is based on the description logic EL. It enables polynomial time algorithms for all the

standard reasoning tasks; it is particularly suitable for applications where very large

ontologies are needed, and where expressive power can be traded for performance

guarantees.[10]

7.4.2. OWL 2 QL:

 Is based on description logics similar to DL-Lite . It is one of three profiles of the Web

Ontology Language OWL 2, was designed with the aim of supporting ontology-based data

access (OBDA). The key idea is that data, ‘stored in a standard relational database

management system (RDBMS), can be queried through an OWL 2 QL ontology via a simple

rewriting mechanism, i.e., by rewriting the query into an SQL query that is then answered by

the RDBMS, without any changes to the data’ (www.w3. org/TR/owl2-profiles). The

rewritability property ensures, in particular, that the data complexity of answering queries

over OWL 2 QL ontologies matches the complexity of database query answering, which is in

AC0.[10]

7.4.3.OWL 2 RL:

 Enables the implementation of polynomial time reasoning algorithms using rule-

extended database technologies operating directly on RDF triples; it is particularly suitable for

applications where relatively lightweight ontologies are used to organize large numbers of

individuals and where it is useful or necessary to operate directly on data in the form of RDF

triples. [10]

15

8.Why are ontologies important? :
 Without ontologies, or the conceptualizations that underlie knowledge, there cannot be a

vocabulary for representing knowledge. Thus, the first step in devising an effective

knowledge representation system, and vocabulary, is to perform an effective ontological

analysis of the field, or domain. Weak analyses lead to incoherent knowledge bases.

Clarifying the terminology enables the ontology to work for coherent and cohesive reasoning

purposes

Ontologies enable knowledge sharing. Suppose we perform an analysis and arrive at a

satisfactory set of conceptualizations, and their representative terms, for some area of

knowledge for example, the electronic-devices domain. The resulting ontology would likely

include domain-specific terms such as transistors and diodes; general terms such as functions,

causal processes, and modes; and terms that describe behavior such as voltage. The ontology

captures the intrinsic conceptual structure of the domain.

 In order to build a knowledge representation language based on the analysis, we need to

associate terms with the concepts and relations in the ontology and devise a syntax for

encoding knowledge in terms of the concepts and relations.[11]

 We can share this knowledge representation language with others who have similar

needs for knowledge representation in that domain, thereby eliminating the need for

replicating the knowledge-analysis process. Shared ontologies can thus form the basis for

domain-specific knowledge-representation languages. Shared ontologies let us build specific

knowledge bases that describe specific situations. For example, different electronic devices

manufacturers can use a common vocabulary and syntax to build catalogs that describe their

products. Then the manufacturers could share the catalogs and use them in automated design

systems. This kind of sharing vastly increases the potential for knowledge reuse.[11]

9. CONCLUSION:

 The goal of semantic web research is to enable the vast range of web-accessible information and

services are given a well defined meaning. The semantic Web is a Web for machines, but the

process of creating and maintaining it is a social one. To make possible the creation of the

semantic Web the W3C has been actively working on the definition of open standards, such as

the RDF and OWL. Although machines are helpful in manipulating symbols according to pre-

defined rules, only the users of the semantic Web have the necessary interpretative and

16

associative capability for creating and maintaining ontologies. The principal benefit of semantics

is that it provides a formal foundation for reasoning about the properties of systems that do

automated knowledge translation based on sharing of ontology. Developers are vigorously

building semantic Web services.

The goal of an ontology is to achieve a common and shared knowledge that can be

transmitted between people and between application systems. Thus, ontologies play an

important role in achieving interoperability across organizations and on the Semantic Web,

because they aim to capture domain knowledge and their role is to create semantics explicitly

in a generic way, providing the basis for agreement within a domain. Thus, ontologies have

become a popular research topic in many communities. In fact, ontology is a main component

of this research; therefore, the definition, structure and the main operations and applications

of ontology are provided.

Chapter 2:

DESCRIPTION LOGICS

18

1. INTRODUCTION:

 Description logics (DLs): are a family of formal knowledge representation

(KR) languages[20],which is among the most important formalisms for ontological

modeling today, which is also due to their central role for the semantics of the Web Ontology

Language OWL. that can be used to represent the terminological knowledge of an application

domain in a structured way. [12]

 DLs are built from atomic concepts and atomic roles . Such description can be use in

axioms and assertions of DL Knowledge bases and can be reasoned about write DL

knowledge based by DL Systems.

 Description Logics support inference patterns that occur in many applications of intelligent

information processing systems, and which are also used by humans to structure and

understand the world: classification of concepts and individuals.

 Classification of concepts determines subconcept/superconcept relationships (called

subsumption relationships in DL) between the concepts of a given terminology, and

thus allows one to structure the terminology in the form of a subsumption hierarchy.

 Classification of individuals (or objects) determines whether a given individual is

always an instance of a certain concept. [13]

2. Definition of the basic formalism:

 A knowledge base (KB) comprises two components, the TBox and the ABox:

Figure 6:Architecture of a knowledge representation system based on Description Logics.

[23]

19

 The TBox introduces t²he terminology, i.e., the vocabulary of an application domain.

 The ABox contains assertions about name individuals in terms of this vocabulary.

2.1.The TBox :

 One key element of a DL knowledge base is given by the operations used to build the

terminology. Such operations are directly related to the forms and the meaning of the

declarations allowed in the TBox.

 The TBox can be used to assign names to complex descriptions. The language for building

descriptions is a characteristic of each DL system, and different systems are distinguished by

their description languages. [14]

 The basic form of declaration in a TBox is a concept definition, that is, the definition of a

new concept in terms of other previously defined concepts. For example, a woman can be

defined as a female person by writing this declaration:

 Woman≡Person ∩Female

 That declaration is usually interpreted as a logical equivalence which amounts to providing

both sufficient and necessary conditions for classifying an individual as a Woman. This form of

definition is strength of this kind of declaration is usually considered a characteristic feature of

DL knowledge bases.[14]

 the below figure (figure 7) illustrates how convert natural language into TBox inference

Figure 7: DL-based TBOX inference.

DL terminologies:

_ Only one definition for a concept name is allowed.

20

_ Definitions are acyclic in the sense that concepts are neither defined in terms of themselves

nor in terms of other concepts that indirectly refer to them.

TBox Axiomes:

 A name can be assigned to a concept description by a concept definition. For instance, we

can write Tutorial ≡ ����� ⊓ ∃ �������. �������� ⊓ ∃ ℎ�������. ⊤ to supply a concept

definition for the concept Tutorial. Let A be a concept name and C, D be (possibly) complex

concept description:

• A concept definition is a statement of the form equivalent A ≡ C.

• A general concept inclusion (GCI for short) is a statement of the form C ⊑ D.

 It is easy to see that every concept definition A ≡ C can be expressed by two GCIs: A ⊑ C

and C ⊑ A. The terminological information expressed by GCIs is collected in the so-called

TBox, which is simply a finite set of GCIs. [15]

In the figure 8 and figure 9 DL Syntax and Example for illustrates the Tbox axioms.

Figure8: Axiom of OWL

Figure 9:OWL CLASS CONSTRUCTOR.

2.2.The ABox:

 The ABox contains extensional knowledge about the domain of interest, that is, assertions

about individuals, usually called membership assertions. For example:

21

 Female ∩ Person(fatma)

 states that the individual fatma is a female person. Given the above definition of woman,

one can derive from this assertion that fatma is an instance of the concept Woman.

��������(�����, �������)

 specifies that fatma has mohamed as a child. Assertions of the first kind are also called

concept assertions, while assertions of the second kind are also called role assertions.

In the ABox, one describes a specific state of affairs of an application domain in terms of

concepts and roles.

the figure 10 illustrates how the convert the natural language into ABox inference :

Figure 10: DL-based ABOX inference.

Some of the concept and role atoms in the ABox may be defined names of the TBox. [16]

 ABox assertions:

An individual assertion can have any of the following forms:

 • C(a), called concept assertion,

 • R(a, b), called role assertion,

 • ¬R(a, b), called negated role assertion,

 • a = b, called equality statement

• � ≠ �, called inequality statement [17]

3. The basic description formalism :

 A: Atomic Concept

⊤ : Universal Concept

22

⊥ : Bottom concept

 ¬C : Negation

 � ⊔ � : Union

� ⊓ � : Intersection

∃R.C : existential restriction

∀R.C : Universal restriction

where A is an atomic concept, C and D are concepts, and R is a role. [18]

4. Semantics :

 The semantics of description logics is defined in a model-theoretic way. Thereby, one

central notion is that of an interpretation. Interpretations might be conceived as potential

“realities” or “worlds.” In particular, interpretations need in no way comply with the actual

reality. [29]

4.1. Interpretation:

An interpretation � = (��,·�) consists of anon-empty set ��, the domain of I, and a valuation

function ·I that maps:

1. Each individual � ∈ �� to an element � � ∈ ��,

2. each concept name � ∈ �� to a set � � ⊆ ��,

3. each role name � ∈ �� to a binary relation �� ⊆ �� × ��

4. for the special concepts names, if present, we have ⊤� = ��and ⊥�= ∅.

A DL vocabulary is in fact a FOL signature, that contains no function symbols and no

variables, but only constants (��) and predicates of arities one (��) and two (��).

Interpretations are just standard Tarski-style interpretations as in FOL[17]

Example 1:

-The role names hasParent, hasFather, hasMother, . . .

– The concept names Parent, Mortal, Male, Female, . . .

– The individual names fatma, mohamed, , …

23

DL

 Interpretations

DL name

 A �(�) ⊆ �(△) Primitive concept

R �(�) ⊆ �(△) ∗ �(△) Primitive role

⊤ �(△) Top

⊥ � Bottom

¬C �(△)/�(�) Complement

� ⊔ � �(�) ∪ �(�) Conjunctive

� ⊓ � �(�) ∩ �(�) Disjunctive

∃R.C {�|∃�. �(�, �) ∈ �(�)⋀�(�) ∈ �(�)} Existential quantitative

∀R.C {x | ∀y. I(x, y) ∈ I(R) → y∈ I(C)} Universal quantitative

Table 1:Translation between interpretation and DL.

4.1.1. The semantics of TBox Axiomes:

 Is defined as one would expect. An interpretation I satisfies an inclusion � ⊑ � if�(�) ⊆

�(�), and it satisfies an equality C ≡ D if (�) = �(�).

 If � is a set of axioms, then � satisfies � iff � satisfies each element of �. If � satisfies an

axiom , then we say that it is a model of this axiom . Two axioms or two sets of axioms are

equivalent if they have the same models.

4.1.2. Semantics of ABox assertion:

 The interpretation� satisfies the concept assertion C(a) if �(�) ∈ �(�) , and it satisfies the role

assertion R(a, b) if �(�, �) ∈ �(�). An interpretation satisfies the ABox A if it satisfies each

assertion in A. In this case we say that I is a model of the assertion or of the ABox.

5. DESCRIPTION LOGICS, A BIG FAMILY OF LOGICS :

We will give a general introduction to Big Family Description Logics:

24

5.1.The Basic Description Logics ALC and ALCH:

The semantics of description logics is defined in a model-theoretic way. Thereby, one

central notion is that of an interpretation. Interpretations might be conceived as potential

“realities” or “worlds.” In particular, interpretations need in no way comply with the actual

reality.

Concepts and Roles. We start with the syntax of concepts and roles. ALC and ALCH do not

support any role constructors, that is, only role names p are roles. On the other hand, they

provide the five ‘basic’ concept constructors: negation ¬C, conjunction �1 ⊓ �2, disjunction

�2 ⊔ �2, and existential and universalrestrictions which are expressions of the form ∃�. �

and∀�. �, respectively.

Definition 2 (ALCH concepts and roles). Each role name p ∈ N�is a role.

Concepts C obey the following grammar, where A ∈ N� and p is a role:

�, �1, �2 ∷= � | ¬� | �1 ⊓ �2 | �2 ⊔ �2 | ∃�. � | ∀�. �

In ALC and all its extensions, the special names and ⊥ can be simulated usinga tautological

concept of the form � ⊔ ¬�and a contradictory concept of theform � ⊔ ¬�, respectively, so

it makes no difference whether we assume thatthey are present in the signature or not.

Concepts of the form ∃�. ⊤are usually called unqualified existential restrictions, and written

∃�.

Assertions and Axioms Using these concepts and role expressions, we can write different

kinds of statements. These may also vary in different DLs, but in general, they can be

classified into two different kinds:

– At the extensional level, we can state that a certain individual participate in some concept,

or that some role holds between a pair of individuals; wecall this kind of statement ABox

assertions. A finite set of this assertions is called an ABox.

At the intentional level, we can specify general properties of concepts and roles, constraining

the way they are interpreted and defining new concepts and roles in terms of other ones. We

call these kinds of statements TBox axioms, and a TBox is a finite set of them. TBox are also

called terminologies.

ABox assertions and TBox axioms together form a knowledge base (KB).

Ontologies The term ontology is used frequently, but it does not have a fixed, formally

defined meaning. It is used both as a synonym for TBox, or as a synonym for KB. We adopt

the former use, i.e., an ontology is just a terminology.

25

 This meaning is perhaps more frequent, particularly in the context of ontology based data

access that we will discuss in the next chapter.

We now define the assertions and axioms of the basic DL ALCH.

Definition 3 (ALCH ABox assertions and TBox axioms). For ALCH, assertions and axioms

are defined as follows.

ABox assertions:

– If C is a concept and a ∈ N� is an individual, then C(a) is a concept membership assertion.

– If p is a role and a, b ∈ N�are individuals, then p(a, b) is a role membership assertion.

– If a, b ∈ N� are individuals, then a ≉ b is an inequality assertion.

TBox axioms:

– If C1 and C2 are concepts, then C1 ⊑ C2 is a general concept inclusion

axiom (GCI).

– If p1 and p2 are roles, then p1 ⊑ p2 is a role inclusion axiom (RIA).

Assertions and axioms for ALC are defined analogously, but RIAs p1 ⊑ p2 are

disallowed.

Knowledge Bases. Now we can define knowledge bases, which are composed by a set of

ABox assertions, the ABox, and a set of TBox axioms, the TBox.

The definition of these components is the same for all DLs.

Definition 4 (ABoxes, TBoxes, Knowledge bases). For every DL L, we define:

– An ABox in L is a finite set of ABox assertions in L.

– A TBox in L is a finite set of TBox axioms in L.

– An knowledge base (KB) in L is a pair � = < �, � >, where A is an ABox in

L and T is a TBox in L.

TBox:

������ ⊑ �������ℎ���

 ������ ≡ ������ ⊓ ∀ℎ��������. ������

����� ≡ ������ ⊓ ∀ℎ��������. �����

���� ≡ ������ ⊓ ∃ℎ��������. ����� ⊓ ∃ℎ��������. ������

∃ℎ��������. ���� ⊑⊥

ABox:

Horse(Mary)

Mule(Peter)

Donkey(Sven)

26

hasParent(Peter, Mary)

hasParent(Peter, Carl)

 hasParent(Sven, Hannah)

hasParent(Sven, Carl) [30]

Definition 5 (semantics of ALCH concepts). Let I = (ΔI, ·I) be an interpretation. The

function ·I is inductively extended to all ALCH concepts as follows:

(¬�)� = �� \��

�1 ⊓ �2)� = �1� ∩ �2�

(�1 ⊔ �2)� = �1� ∪ �2�

(∃�. �)� = {� | ∃�′. (�, �′)� ∈ �� ∧ (��)� ∈ ��}

(∀�. �)� = {� |∀��. (�, ��)� ∈ � � → (��)� ∈ ��}

 Now that we have fixed the semantics of concepts and roles, we can define the satisfaction

of assertions and axioms. This is done in a natural way. The symbol ⊑in the TBox axioms is

understood as an relation. That is, a concept inclusion C1 ⊑ C2 indicates that every object

that is C1 is also C2, or to be more precise, that every object that participates in the

interpretation of concept C1 also participates in the interpretation of concept C2. Similarly, a

role inclusion �1 ⊑ �2 indicates that every pair of objects that participates in p1 also

participates in p2. Concept and role membership assertions in the ABox simply state that (the

interpretation of) an individual participates in (the interpretation of) a concept, and that a pair

of individuals participates in a role, respectively.

An assertion of the form � ≉ �states that the individuals a and b cannot be interpreted as the

same domain element. This is closely related to the unique name assumption (UNA),

sometimes made in related formalisms. Under the UNA, each interpretation I must be such

that �� = ��only if a = b, that is, one domain element cannot be the interpretation of two

different individuals. In DLs the common practice is not to make the UNA. This setting is

more general and, if desired, the UNA can be enforced by adding assertions � ≉ �for

eachrelevant pair of individuals.

5.2.Expressive and Lightweight DLs:

 The term lightweight DLs refers to logics that are based on fragments of ALC and restrict

its expressivity to achieve lower complexity, enabling the realization of efficient and scalable

algorithms. The most prominent lightweight DLs are the DL-Lite and EL families underlying

the OWL QL and RL profiles, respectively.

27

5.3.The SH Family:

 SHOIQ is a very expressive DL that is closely related to the Web Ontology Language

standard known as OWL-DL . SHOIQ supports the vast majority of the common DL

constructors, and hence most popular DLs can be defined assublogics of it.

Definition 8 (SHOIQ concepts and roles). Atomic concepts B, concepts C and (atomic) roles

P, S obey the following grammar, where � ∈ ��, � ∈ ��,� ∈ ��, ��� � ≥ 0:

� ∷= � | {�}

�, �1, �2 ∷= � | ¬� | �1 ⊓ �2 | �1 ⊔ �2 | ∃�. � | ∀�. � | ≥ � �. � | ≤ � �. �

�, � ∷= � | ��

 The inverse of � ∈ �� is ��, and the inverse of �� �� �. To avoid expressions such

as(��)�, we denote by ���(�) the inverse of the role P. Concepts of the form {a} are called

nominal, while concepts ≥ � �. � and ≤ � �. � are called(qualified) number restrictions

(NRs).

 If a number restriction is of the form ≥ n S. or ≤ n S., it is called unqualified and can be

written simply ≥ n S. or ≤ n S.

In addition to the new role constructor ��and the new concept constructors{a},

≥ n S. and ≤ n S, SHOIQ extends ALCH with another kind of axioms.

Definition 9 (SHOIQ ABox assertions and TBox axioms). ABox assertions, GCIs and

RIAs in SHOIQ are defined analogously to ALCH, but allowing for SHOIQ concepts and

roles where applicable. In addition to GCIs and RIAs, SHOIQ TBox allow for transitivity

axioms (TAs), which are expressions trans(P) where P is a role.

Knowledge bases in SHOIQ are defined essentially as for ALCH, but must satisfy an

additional constraint: the roles S that occur in the number restrictions ≥ � �. � ��� ≤

� �. � must be simple, which means that they can not be impliedby roles occurring in

transitivity axioms. Intuitively, this allows us to count only the direct neighbors of a node, but

not nodes that are further away inane interpretation. It is well known that dropping this

restriction results in an undecidable logic.

 To formalize the notion of simple roles, we use the relation ⊑�, which relates

each pair of roles P1, P2 such that �1� ⊆ �2�holds in every interpretation thatsatisfies T .

28

Definition 10 (simple roles, SHOIQ knowledge bases). For a TBox T , we denote by⊑�the

reflexive transitive closure of {(�1, �2)|�1 ⊑ �2 �����(�1) ⊑ ���(�2) is in T }; we

usually write ⊑� in infix notation. A role S is simplew.r.t. T , if there is no P such that P ⊑�S

and trans(P) ∈ T .

 A knowledge base in SHOIQ is a pair � = ≺ �, � ≻consisting of an ABox A and a TBox T,

such that all roles S occurring in a number restriction ≥ ��. ��� ≤ ��. � are simple w.r.t. T.

Example about TBox:

��������������� ⊑ ∀������ℎ���. ���������

���ℎ������ ⊑ ∃������ℎ���. {949352}

������������������� ⊑ ∃����ℎ��. �������������������

 ������ � ⊑ ≥ 1 ������ℎ��� ���������� ⊓ ≥ 10 ℎ��������� ⊓ ≤ 30 ℎ��������

������ ⊑ ¬�����������

����������� ≡ ����������� � �������

 ����������� ≡ ������� ⊓ ∃���������. {������������}

���������� ≡ ����������� ⊓ ¬(������� � ���ℎ������������)[31]

Semantics of SHOIQ. To give semantics to SHOIQ knowledge bases, we need to define the

semantics of the new concept and role constructors.

Definition 11 (semantics of concepts and roles in SHOIQ). For every interpretation I, we

define:

(��)� = {(�′, �) | (�, �′) ∈ ��}

{�}� = {��}

(≥ � �. �) � = {� | {�′ | (�, �′) ∈ �� ∧ �′ ∈ ��}| ≥ �}

(≤ � �. �) � = {� |{�′ | (�, �′) ∈ �� ∧ �′ ∈ ��}| ≤ �}

 We also need to define the semantics of assertions and axioms, on which the semantics of

knowledge bases depends. Sublogics of SHOIQ. There are many well known DLs that

contain ALC, and extend it with some of the features of SHOIQ. The logic S is the extension

of ALC with transitivity axioms. Both ALC and S can be extended with the additional

features as follows: the presence of the letter H indicates that RIAs are allowed, and the

additional letters I, O and Q respectively denote the presence of inverses as a role constructor,

29

of nominals, and of number restrictions. Some of these extensions, are listed in Table 2. The

best known of them is SHIQ, which is closely related to the OWL-Lite standard.

DL Tas RIAs Inverses nominals NRs

ALC

ALCI

ALCHQ

SH

SHIQ

SHIQ

SHOI

ALCHOIQ

SHOIQ

Table 2:Some expressive DLs between ALC and SHOIQ.

5.4. The SR Family:

 SROIQ is a rather well known extension of SHOIQ, which was proposed as the basis for

the Web Ontology Language standard OWL 2 . Its sublogics SRIQ, SROQ and SROI are

analogous to SHIQ, SHOQ and SHIO.

The most prominent feature of the logics in the SR family are complex role inclusion axioms

of the form P1 ° ∙∙∙∙∙ °� ⊂ �. It is also possible to explicitlystate certain properties of roles like

transitivity, (ir)reflexivity and disjointness.Some of these additions increase the expressivity

of the logic, while others are just ‘syntactic sugar’ and are intended to be useful for ontology

engineering. Were call the definition of SROIQ from , borrowing some notation from .As

usual, we start by defining concepts and roles.

Definition 13 (SROIQ concepts and roles). In SROIQ, we assume that the signature contains

a special role name U, called the universal role. Atomic concepts B, concepts C, atomic roles

P, S, and roles R, obey the follow in grammar, where � ∈ ��, � ∈ ��, � ∈ ��:

� ∷ = � | {�}

�, �1, �2 ∶: = � | ¬� | �1 ⊓ �2 | �1 ⊔ �2 | ∀�. � | ∃�. � | ∀�. � | ∃�. � | ∀�. � |

≥ ��. � | ≤ ��. � | ∃�. ����

�, � ∷= � | ��

�, �1, �2 ∷= � | �1 ∘ �2

We denote by NR the set of all atomic roles {�, �� | � ∈ ��}. Non-atomic rolesof the form

�1 ∘···∘ �� may be called role chains.Note that U may only occur in universal and existential

restrictions. SROIQ supports some assertions and axioms that were not present in the other

30

logics so far. In particular, the rich role axioms are its main distinguishing feature.

Definition 14 (SROIQ ABox assertions, TBox axioms). In SROIQ, ABox assertions are as

follows:

– If C is a concept and � ∈ �� an individual, then C(a) is a concept membership assertion.

– If P is an atomic role and �, � ∈ �� are individuals, then �(�, �) is a (positive) role

membership assertion.

– If S is an atomic role and �, � ∈ �� are individuals, then ¬�(�, �) is a (negative) role

membership assertion.

– If a, � ∈ �� are individuals, then � ≉ � is an inequality assertion.

TBox axioms are GCIs, defined as usual, as well as:

– If R is a role chain and P is an atomic role, then � ⊑ � is a complex role inclusion axiom

(CRIA).

 To define SROIQ knowledge bases, we need some additional conditions that were designed

to ensure decidability. In particular, we need a notion called regularity and, similarly to

SHOIQ, we must define simple roles, and restrict the roles occurring in certain positions to be

simple. As for SHOIQ, we define a relation⊑�that contains the pairs R, P of roles such that

�� ⊆ ��for each model I of T , but the definition is more involved due to the presence of role

chains in the role inclusion axioms.

6. Reasoning Services:

 The basic reasoning services in DL systems is to test for the satisfiability of a concept or a

TBox, to test whether the information specified in it contains logical contradictions or not.

In case the TBox contains a contradiction, any consequence can follow logically from the

TBox. Moreover, if a TBox is not satisfiable, the specified information can hardly capture the

intended meaning from an application domain. To test for satisfiability is often a first step for

a user to check whether a TBox models something “meaningful”.

 The concept description C is satisfiable iff it has a model, iff there exists an interpretation�

such that �(�) ≠ ∅. A TBox � is satisfiable iff it has a model, an interpretation that satisfies

all GCIs in � .

 If a concept or a TBox is not satisfiable, it is called unsatisfiable. [19]

31

6.1.Reasoning services of TBox Axiomes:

 C, D two concept descriptions and � is TBox. The concept description C is subsumed by the

concept description D w.r.t. (� ⊑ �):

 iff �(�) ⊆ �(�) holds in every model� of � .

 Two concepts C, D are equivalent w.r.t. T (� ≡ �):

 iff �(�) = �(�) holds for every model � of � .

6.2.Reasoning services of ABox assertion:

 We can test for the absence of contradictions in ABoxes. An ABox � is consistent w.r.t. a

TBox� , iff it has a model that is also a model for . The individual� is an instance of the

concept description C w.r.t. an ABox A we write �(�) :

 iff �(�) ∈ �(�)for all models �of A.

7. Reasoning Techniques:
 There are three main reasoning approaches for the DLs that underlie OWL. For the

expressive DLs, which offer all Boolean concept constructors, most reasoning services can be

reduced to consistence of an ABox w.r.t. a TBox in polynomial time. In presence of full

negation we can devise the following polynomial time reductions.

• Equivalence can be reduced to subsumption: C ≡ D iff C ⊑ D and D ⊑C.

• Subsumption can be reduced to (un)satisfiability: C ⊑ D iff C ⊓ ¬D is unsatisfiable

 w.r.t. T .

• Satisfiability can be reduced to consistency: C is satisfiable w.r.t. T iff the ABox {C(a)} is

consistent w.r.t. T .

• The instance problem can be reduced to (in)consistency: � ∪ � ⊩ �(�) ��� � ∪ {¬�(�)}

is inconsistent w.r.t. T . [19]

32

8. FOL:

 First-order logic (FOL) is provides a way of representing information like the : Mary is a

person. Whereas propositional logic assumes world contains facts, first-order logic (like

natural language) assumes the world contains: Constants and Predicates as jhon is person and

function as Italian(fatherOf (Mario)).

 FOL is the basis of any query language for relational databases, to the best of our

knowledge, the most expressive class of queries that go beyond instance checking, and for

which decidability of query answering has been proved in DLs, is the class of union of

conjunctive queries (UCQ) . This restriction on the query language may constitute a serious

limitation to the adoption of DLs technology in information management tasks, such as those

required in Semantic Web applications.

8.1. The table for FOL:

 Many description logics are decidable fragments of first-order logic (FOL�), also known

as first-order predicate calculus (FOPC), and many of two-variable logic or guarded logic,

however, some description logics have more features than first-order logic.

FOL DL

�(�, �) �(�)

�(�, �) �
�(⊥, �) ⊥
�(¬� , �) ¬�(�, �)
�(� ⊓ � , �) �(�, �) ∧ �(�, �)
�(� ⊔ � , �) �(�, �) ∨ �(� , �)
�(∀�. �, �) ∀� (�(�, �) → �(�, �))
�(∃�. �, �) ∃��(�, �) ∧ �(�, �)

Table3:Translation between DL and FOL.

 Despite of the feasibility of direct translation between FOL and DL, guaranteeing complete

and terminating reasoning requires a different transformation, such as the structural

transformation. The structural transformation is based on a conjunction normal form, which

replaces FOL sub formulae with new predicates, for which it also provides definitions. A

major advantage of the structural transformation is that it avoids the exponential size growth

of the clauses. [20]

33

9. DL-Lite:

 The DL-Lite family is testified by the fact that it forms the basis of OWL 2 QL, one of the

three profiles of OWL. The OWL 2 profiles are fragments of the full OWL 2 language that

have been designed and standardized for specific application requirements. According to the

official W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for

applications that use very large amounts of data and where query answering is the most

important reasoning task.

 DL-Lite family of description logics was proposed with the aim of capturing typical

conceptual modeling formalisms, such as UML class diagrams and ER models ,while

maintaining good computational properties of standard DL reasoning tasks . [21]

10. DAML+OIL and Description Logics:

DAML+OIL is a language developed as part of the US DARPA Agent Markup Language

(DAML) programme and OIL (the Ontology Inference Layer) , developed by a group of

(mostly) European researchers. This language has a syntax based on RDF Schema (and thus is

Web compatible), and it is based on common ontological primitives from Frame Languages

(which supports human understandability). Its semantics can be defined via by a translation

into the expressive DL SHIQ.

DAML+OIL is designed to describe the structure of a domain; it takes an object oriented

approach, describing the structure in terms of classes and properties. An ontology consists of

a set of axioms that assert, e.g., subsumption relationships between classes or properties.

Asserting that resources (pairs of resources) are instances of DAML+OIL classes (properties) is

left to RDF, a task for which it is well suited. When a resource res is an instance of a class C

we say that rec has type C. From a formal point of view, DAML+OIL can be seen to be

equivalent to a very expressive description logic (DL), with a DAML+OIL ontology

corresponding to a DL terminology (Tbox). As in a DL, DAML+OIL classes can be names

(URIs) or expressions, and a variety of constructors are provided for building class

expressions. The expressive power of the language is determined by the class (and property)

constructors supported, and by the kinds of axiom supported. [22]

34

11. Conclusion:

 The emphasis in DL research on a formal, logic-based semantics and a thorough

investigation of the basic reasoning problems, together with the availability of highly

optimized systems for very expressive DLs, makes this family of knowledge representation

formalisms an ideal starting point for defining ontology languages for the Semantic Web. The

reasoning services required to support the construction, integration, and evolution of high

quality ontologies are provided by state-of-the-art DL systems for very expressive languages.

 To be used in practice, these languages will, however, also need DL-based tools that further

support knowledge acquisition (i.e., building ontologies), maintenance (i.e., evolution of

ontologies), and integration and inter-operation of ontologies. First steps in this direction have

already been taken. For example, OilEd is a tool that supports the development of OIL and

DAML+OIL ontologies, and ICom is a tool that supports the design and integration of entity-

relationship and UML diagrams. On a more fundamental level, so-called non-standard

inferences that support building and maintaining knowledge bases (like computing least

common subsumers, unification, and matching) are now an important topic of DL research .

All these efforts aim at supporting users that are not DL-experts in building and maintaining

DL knowledge bases.

Chapter 3:

OBDA

1. Introduction:

 Ontology-based data access (OBDA) is a recent paradigm for accessing and integrating

data sources through an ontology that acts as a conceptual, integrated view of the data, and

declarative mappings that connect the ontology to the data sources.[37] an ontology defines a

high-level global schema of (already existing) data sources and provides a vocabulary for user

queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the

data sources and then delegates the actual query evaluation to a suitable query answering

system such as a relational database management system. [23]

 The first experiences in the application of the OBDA framework in real-world scenarios

have shown that the semantic distance between the conceptual and the data layer is often very

large, because data sources are mostly application-oriented: this makes the definition,

debugging, and maintenance of mappings a hard and complex task. Such experiences have

clearly shown the need of tools for supporting the management of mappings. [24]

Figure 11:Ontology Based Data Access (OBDA).

2. Ontology-based data access framework:
 In last decade the terms related to Semantic Web become significant elements in the

efficient way of information retrieval, processing and supporting availability of machine

readable data. An ontology offers a wide spectrum of its application for data access.

Ontology-Based Data Access is regarded as a key ingredient for the new generation of

information systems, especially for Semantic Web applications that involve large amounts of

36

data. OBDA system uses an ontology as a conceptual schema of the subject domain, and as a

basis of the user interface for SQL database systems. we will present overview of OBDA

[40]wich has gained attention in recent years for providing access to large volumes of data by

using ontologies as a conceptual layer and exploring their ability to describe domains and deal

with data incompleteness. This is done through mappings that connect the data in the database

to the vocabulary of the ontology. [25]

3. Mapping between the data and the ontology:

 One important aspect in OBDA concerns the construction of a system specification,

defining the ontology and the mappings over an existing set of data sources. Mappings are

indeed the most complex part of an OBDA specification, since they have to capture the

semantics of the data sources and express such semantics in terms of the ontology. More

precisely, a mapping is a set of assertions, each one associating a query φ(x) over the source

schema with a query ψ(x) over the ontology. The intuitive meaning of a mapping assertion is

that all the tuples satisfying the query φ(x) also satisfy the query ψ(x). We write a mapping

assertion as �(�) ↝ �(�).

 As an example, consider ����(�, �, �) ↝ ������(�), name(x, y), which maps the

ontology predicates person and name to the database relation tabP, thus indicating how

ontology instances can be constructed from the data retrieved at the sources.

 In the following, we assume to have three pair wise disjoint, countably infinite alphabets:

an alphabet�� of ontology predicates, an alphabet ��of source schema predicates, and an

alphabet �� of constants.

Data sources(S): A data source S consists of a data schema and a number of corresponding

data instances. which are external and independent (possibly multiple and heterogeneous). A

typical example for a data source is a relational or semi-structured database.

 A source schema S is a relational schema containing relations in ΓS, possibly equipped

with integrity constraints (ICs). A legal instance D for S is a database for S that satisfies the

��s of S. Const(D) are the set of constants occurring in D. Given a first-order sentence α, we

write S |= α if for each database D legal for S, the interpretation � � ⊩ �, where � � is the

interpretation induced by D.

37

We consider simple schemas, i.e., relational schemas without ���, and FD schemas, i.e.,

simple schemas with functional dependencies (FDs) . and by a CQ over a source schema S

that mean a CQ over the alphabet of S. With �(~�) which denote a CQ with free variables

~�. The number of variables in ~� is the arity of the query. A Boolean CQ is a CQ without

free variables. Given a CQ q over S and a legal instance D for S, ����(�, �) denotes the

evaluation of q over D.

Ontology: In the context of OBDA, it is usual to consider the ontology to be a Description

Logic (DL) ontology (equivalently, an OWL ontology). A DL ontology consists of a finite

set of axioms that are usually in the form of set inclusions between two (possibly complexly

defined) concepts that represent classes of objects. The ontology captures general knowledge

about the domain of interest, such as generalizations, relational links, etc.Ontology provides a

unified, conceptual view of the managed information.

 In particular, a DL ontology � is pair ℎ� , ��, where T is the TBox and A is the ABox. O,

T. we do not interpret ontologies under the Unique Name Assumption. ���(�) are the set

of models of O, and with � ⊩ � the fact that O entails a sentence α. Also, by ontology

inconsistency we mean the task of deciding whether Mod(O) = ∅, and by instance checking

the task of deciding whether � ⊩ �, where β is a ground atom. By CQs over O we mean

CQs over the alphabet of the TBox of O, and by CQ entailment the task of checking whether

� ⊩ �, where q is a Boolean CQ. we consider DLs that are the logical basis of the W3C

standard OWL and of its profiles, SROIQ , which underpins OWL, DL-LiteR , which is the

basis of OWL 2 QL, RL .

 Mappings : Mappings associate data from the data sources with concepts in the ontology.

A mapping m has the form:

� ∶ �(�) ⇝ � (�)

 �(�): is a query over the data sources. called the body of m.� (�) is an element of the

ontological vocabulary. called the head of m. The number of variables in x is the arity of the

mapping assertion. Given a mapping assertion m, we also use FR(m) do denote the frontier

variables x, head(m) to denote the query ψ(x), and body(m) to denote the query φ(x). We also

remark that queries used in our mappings, besides variables, may contain constants from ��.

A mapping M from S to T is a finite set of mapping assertions from S to Thereinafter M will

always denote a mapping. In principle, φ(x) and ψ(x) can be specified in generic query

38

languages. The literature on data integration and OBDA has mainly considered φ(x)

expressed in first-order logic (FOL), and ψ(x) expressed as a CQ.[26]

4. Query rewriting:

 Query rewriting is an important technique for answering queries over data described

using ontologies. In query rewriting the input, a conjunctive query (CQ) q and an ontology O,

is transformed into a new data-log query that captures all answers

of q over O and any dataset D. This process can be time-consuming as it is of high

computational complexity. In many real-world applications, this can be particularly

problematic as they involve frequent and relatively small modifications on quite large

ontologies. Hence, a drawback of most of modern query rewriting systems is that every time

the initial ontology is modified, e.g. when new axioms are added or existing ones removed,

they compute a new rewriting from scratch. In this paper, we study the problem of computing

a rewriting for a CQ over an ontology that has been modified. We do this by reusing the

information obtained by the extraction of some previous rewriting with the goal of performing

the least possible computations. We study the problem theoretically, present detailed

algorithms for both ontology revision and ontology contraction and finally, present an

extensive experimental evaluation using the well-known query rewriting systems Requiem.

[27]

4.1. Query Rewriting Algorithms:

 In this section we describe the query rewriting algorithms, We use the well-known notions

of constants, variables, function symbols, terms, and atoms of first-order logic. A Horn clause

C is an expression of the form � � ← �� ∧ . . .∧ ��, where each ��is an atom. The atom �� is

called the head, and the set {��, . . . , ��} is called the body. We require that all the variables

occurring in the head of C occur at least in one ofits body atoms. For instance, the expression

teaches(�, �(�)) ← ���������(�) is a Horn clause.

 A conjunctive query (CQ) Q posed over an ontology O is a Horn clause whose head

predicate does not occur in O, and whose body predicates are class and property names

occurring in O. A union of conjunctive queries (UCQ) over O is a set of conjunctive queries

over O with the same head up to variable renaming . A tuple of constants � is a certain answer

to a UCQ Q over O and a set of instance data � ��� � ∪ � ∪ � ⊨ �� (�),where � �is the

head predicate of Q, and Q is considered to be a set of universally quantified implications

39

with the usual first-order semantics. The set of all answers to Q over O and A is denoted by

���(�, � ∪ �). Given a conjunctive query Q and an ontology O, a query ��is said to be a

rewriting of Q w.r.t. O if ���(�, � ∪ �) = ���(�� , �) for every A. Both algorithms

compute the rewriting �� of a given query Q w.r.t. a DL-LiteR ontology O. DL-LiteR is the

basis for OWL 2 QL. [28]

4.1.1. The algorithm 1:

 The algorithm computes ��by using the axioms of O as rewrite rules and applying them

to the body atoms of Q. The algorithm is shown in Algorithm 1. The partial function ref takes

as input an axiom αand an atom D, and returns an atom ref(D; α) as follows.

��� = �(�)�ℎ����ℎ����ℎ�� (�) ��� = � ⊑ �, �ℎ�����(�; �) = �(�);

(��)��� = ∃� ⊑ �, �ℎ�����(�; �) = � (� ; −); ���(���)��� = ∃�� ⊑ �, �ℎ��

���(�; �) = � (− ; �).

��� = � (�; −), �ℎ����ℎ����ℎ�� (�) ��� = � ⊑ ∃� , �ℎ�����(�; �) = �(�);

(��) ��� = ∃� ⊑ ∃� , �ℎ�����(�; �) = �(�;); ��� (���) ��� = ∃�� ⊑ ∃� ,

�ℎ�����(�; �) = �(−; �).

��� = � (− ; �), �ℎ����ℎ����ℎ�� (�) ��� = � ⊑ ∃��, �ℎ�����(�; �) = �(�);

(��) ��� = ∃� ⊑ ∃��, �ℎ�����(� ; �) = �(�; −); ��� (���) ��� = ∃�−⊑ ∃�� ,

�ℎ�����(�; �) = �(−; �).

��� = � (�; �), �ℎ����ℎ����ℎ�� (�) �����ℎ��� = � ⊑ ���� = ����� ,

�ℎ�����(�; �) = �(�; �); ��� (��) �����ℎ��� = ��� − ��� = � − �� , �ℎ��

���(�; �) = �(�; �).[29]

4.1.2.The algorithm 2:

 This algorithm is based on query rewriting every time the initial ontology is modified

when new axioms are added By usingConjunctive query :

�����: Conjunctive query �, DL − Lite�ontology �

�� = {�};

repeat

 foreach query �′ ∈ ��do

 (reformulation) foreach atom D in Q’do

 foreach axiom � ∈ �do

 if α is applicable to D then

40

�� = �� ∪ {�′[�/���(�; �)]};

 end

 end

 end

 (reduction) forall atoms ��; ��in Q’ do

 if D1 and D2 unify then

σ= MGU(��; ��);

�� = �� ∪ {�(�′�)};

 end

 end

 end

until no query unique up to variable renaming can be added to ��;

return ��; [30]

Example:

41

For DL-Lite, result is a union of conjunctive queries :

Mapping:

 Data can be stored/left in RDBMS

 Relationship between ontology and DB defined by mappings, e.g.:

UCQ translated into SQL query:

4.1.3. Most General Unifier:

 A substitution, is a most general unifier (mgu) of a set of expressions if it unifies

, and for any unifier, of , there is a unifier, such that .

 The idea is that is less specific than (technically, no more specific than) , that is, we

can substitute for some of the variables of and get . Note that there can be more than one

most general unifier, but such substitutions are the same except for variable renaming.

 In the above example, �2 is the mgu of the set of expressions. We can see that : � = �� ∘

[�/�]There is a simple algorithm for finding the most general unifier of a set of expressions.

First, we need to define the disagreement set of a set of expressions. This is found by

(textually) finding the first symbol starting from the left that is not the same in every

expression and extracting the sub expressions that begin with that symbol at that position in

each expression of the set. The resulting set of sub expressions is the disagreement set. For

example, the disagreement set ��� {�(�, �, �), �(�, �(�), �), �(�, �(�), �)�� {, �(�)} .

42

 If ref(D; α) is defined for αand D, we say that αis applicable to D. The expression

�[�/�′] denotes the CQ obtained from Q by replacing the body atom D with a new atom �′

The function MGU takes as input two atoms and returns their most general unifier. The

function λtakes as input a CQ Q and returnsa new CQ obtained by replacing each variable that

occurs only once in Q withthe symbol " − ".

 Starting with the original query Q, Algorithm continues to produce queries until no new

queries can be produced. In the reformulation step the algorithm rewrites the body atoms of a

given query �′by using applicable ontology axiomsas rewriting rules, generating a new query

for every atom reformulation. Then,in the reduction step the algorithm produces a new query

�(�′�) for each pairof body atoms of �′that unify. [31]

5.Query answering:

 Ontological databases extend traditional databases with ontological constraints. This

technology is crucial for many applications such as semantic data publishing and integration

as well as model-driven database design. For many classes of ontological constraints, query

answering can be solved via query rewriting. In particular, given a conjunctive query and a set

of ontological constraints, the query is compiled into a first-order query, called the perfect

rewriting, that encodes the intentional knowledge implied by the constraints. Then, for every

database D, the answer is obtained by directly evaluating the perfect rewriting over D. Since

first-order queries can be easily translated into SQL.

6.Conception:

 We use the conception for presenting application diagrams which illustrate the relationship

between application classes

6.1. Class diagram in the Unified Modeling Language (UML):

 Class diagram is a type of static structure diagram that describes the structure of a system

by showing the system's classes, their attributes, operations (or methods), and the

relationships among objects.[33]

 The class diagram is the main building block of object-oriented modeling. It is used for

general conceptual modeling of the systematic of the application, and for detailed modeling

translating the models into programming code. Class diagrams can also be used for data

43

modeling. The classes in a class diagram represent both the main elements, interactions in the

application, and the classes to be programmed.

In the diagram, classes are represented with boxes that contain three compartments:

 The top compartment contains the name of the class.

 The middle compartment contains the attributes of the class.

 The bottom compartment contains the operations the class can execute.[35]

6.2.Class diagram for application:

 On this page I used the class diagram to illustrate the work of application classes and the

relationship between classes:

Figure 12: Class diagram for OBDA application.

7.Use case for application:

 In the Unified Modeling Language (UML), a use case diagram can summarize the details of

your system's users (also known as actors) and their interactions with the system. To build

one, you'll use a set of specialized symbols and connectors and represent:

44

 Scenarios in which your system or application interacts with people, organizations, or

external systems.

 Goals that your system or application helps those entities (known as actors) achieve.

 The scope of your system.[37]

7.1.Use case diagram components:

To answer the question, "What is a use case diagram?" you need to first understand its

building blocks. Common components include:

• Actors: The users that interact with a system. An actor can be a person, an

organization, or an outside system that interacts with your application or system. They

must be external objects that produce or consume data.

• System: A specific sequence of actions and interactions between actors and the

system. A system may also be referred to as a scenario.

• Goals: The end result of most use cases. A successful diagram should describe the

activities and variants used to reach the goal.[38]

7.2.Use case for application:

45

Figure13: Use case for OBDA application.

8.Diagrame sequence:

 Sequence diagram: an “interaction diagram” that models a single scenario executing in a

system

• 2nd most used UML diagram (behind class diagram)

• Shows what messages are sent and when[38]

8.1.Diagrame sequence for application:

Figure14:Diagrame sequence for OBDA application.(Rewriter)

46

Figure15: Diagram sequence for OBDA application.(RModel)

9. Example about University diagram class:
This application can be implemented on any of the Ontology we want, where I took an

example about the university wish applied about it ontology, where from the classes of this

university the person ,student ,professor, university....., where applied about it Logic

description, which facilitated the establishment of Diagram Class in order to clarify the

relationship between these categories.

9.1.logic description for University:

������ ⊑ ∃������������. ������������

������������ ⊑ ∃������������������������. ������������

������������ ⊑ ∃������������������������. ������������

���������� ⊑ ∃����������. ������

���������� ⊑ ∃ℎ���������. ������

���������� ⊑ ∃������������������. ������

∃������������������ ⊑ ∃����������

���������� ⊑ ∃ℎ������������. �������

47

���������� ⊑ ∃ℎ���������. �������

���������� ⊑ ∃������������������. �������

∃ℎ����� ⊑ ∃�������

���������� ⊑ ∃����������������. ������

∃���������������� ⊑ ∃����������

������ ⊑ ∃������. ������������

������������ ⊑ ∃��������. ������

������ ⊑ ∃����ℎ����. ������������

���������� ⊑ ∃����������������������. ������

���������������������� ⊑ ∃����������

������������������� ⊑ ��������

������������������ ⊑ ���������

������������������ ⊑ ���������

���ℎ�������� ⊑ ����

������ ⊑ ����

�ℎ��� ⊑ �������������������

������������� ⊑ �������������������

������� ⊑ ������������

������ ⊑ ����

���� ⊑ ��������� ⊓ ∃ℎ�����. �������

������ ⊑ ����

�������� ⊑ ������ ⊓ ∃ℎ�����. �������

�������� ⊑ ������ ⊓ ∃�������. ������������

������ ⊑ ���������

���� ⊑ ����

���������� ⊑ ����

������� ⊑ ������������

������������ ⊑ ��������

������������� ⊑ ��ofessor

������������� ⊑ ������

��������������� ⊑ ������ ⊓ ∃�����������. ��������������

������� ⊑ ������������

��������� ⊑ ������������

48

������� ⊑ ������������

�������ℎ��������� ⊑ �������

������� ⊑ ������ ⊓ ∃�����������. ������

����������� ⊑ �������������������

�������������������� ⊑ �������

���������� ⊑ ������������

����������������� ⊑ ���������

9.2.Class diagram for university:

Figure16:Class diagram for university applied in the OBDA application.

10.Development environment:
Eclipse is an integrated development environment (IDE) used in computer programming, and

is the most widely used Java IDE. It contains a base workspace and an extensible plug-

in system for customizing the environment. Eclipse is written mostly in Java and its primary

use is for developing Java applications, but it may also be used to develop applications in

other programming languages via plug-in system for customizing the environment. Eclipse is

49

written mostly in Java and its primary use is for developing Java applications, but it may also

be used to develop applications in other programming languages via plug-ins,

including Ada, ABAP, C, C++, C#, COBOL, D, Fortran, Haskell, JavaScript, Julia, Lasso, Lu

a,NATURAL, Perl, PHP, Prolog, Python, R, Ruby (including Ruby on Rails, Scala,

 Clojure, Groovy, Scheme, and Erlang. It can also be used to develop documents

with LaTeX (via a TeXlipse plug-in) and packages for the software Mathematical.

Development environments include the Eclipse Java development tools (JDT) for Java and

Scala, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among others.[39]

11. Implementation:

The application procedure has been explained . The developed application was performed in

order to expand the process of connecting to the database .it rewrites an ontology query then

it convert it into SQL ,the latter is connected to the database to answer the query by pressing

au the button answer .

Figure17:OBDA application before rewriting and answering query.

50

Figure18: OBDA application after rewriting and answering query.

12. Conclusion:

In this chapter, OBDA is defined .It uses the system of ontology as conceptual Diagram of

the user interface of the database system SQL .

We talked about Query rewriting and the Algorithm that has been used to wake the query

rewriting process easy as well as the answer query which comes after converting every

rewriting query to SQL.

51

 GENERAL CONCLUSION

 The Ontology-Based Data Access (OBDA) paradigm consists in exposing, for the purpose of

querying, a conceptual view of the domain of interest, given in the form of an ontology that

hides the structure of the data sources. Queries can then be posed over this high-level

conceptual view, and end users no longer need an understanding of the data sources, the

relation between them, or the encoding of the data. User queries are translated by the OBDA

system into queries over one or multiple data sources The framework of OBDA has received

a lot of attention in the last years: many theoretical studies have paved the way for the

construction of OBDA systems and the development of OBDA projects for enterprise data

management in various domains . The formalism of choice for representing ontologies in

OBDA is the description logic DL-LiteR , which underpins OWL 2 QL . DL-LiteR was

designed to ensure that queries against the ontology are first order rewritable; that is, they can

be reformulated as a set of relational queries over the sources.

The purpose of this topic that SQL is giving the data exist only in the database reverse

OBDA, which increases the aspects of semantic existing tic. When the query is entered and

the ontology ,the OBDA system rewrites this query and ontology into many of the new

query. where each query transforms into SQL , that we can extract data indirect relationships.

Improvements that need to be made are:

- Automatically convert from database to ontology.

- Create an automatic mapping that converts each query to SQL.

- Give An automatic procedure that converts a query from a natural language into an language

formal where the user only shows the natural language and the result

52

Referances:

[1].Zeeshan Ahmed and Detlef Gerhard,” Role of Ontology in Semantic Web Development”, March

2011 , DESIDOC Journal of Library & Information Technology

[2].G Kück, “Tim Berners-Lee's Semantic Web”,March 2004

[3].TAPAS KUMAR MISHRA, “SEMANTIC WEB “,ACM New York, NY, USA ©2003

[4]. https://www.obitko.com/tutorials/ontologies-semantic-web/semantic-web-architecture.html

 [5].https://www.obitko.com/tutorials/ontologies-semantic-web/rdf-schema-rdfs.html

[6].Mohammad Mustafa Taye, Understanding Semantic Web and Ontologies: Theory and

Applications, June 2010

[7].Ian Horrocks,” Ontologies and the Semantic Web”, 2009, Oxford University Computing

Laboratory Oxford, UK

[8].Elodie Marie Gontier, “Web Semantic and Ontology”,2015

Mechanical Engineering Information and Virtual Product Development (MIVP), Vienna University of

Technology, 1060 Getreidemarkt 9/307 Vienna, Austria

[9].Chandrasekaran and John R and Richard Benjamins, “What Are Ontologies, and Why Do We

Need Them?”, FEBRUARY 1999

[10]. Grigoris Antoniou, Enrico Franconi, and Frank van Harmelen, “Introduction to Semantic Web

Ontology Languages”, Springer-Verlag Berlin Heidelberg 2005

[11].”Web Ontology Language OWL”

[12].https://fr.wikipedia.org/wiki/Logique_de_description

[13]. Anni-Yasmin Turhan,”Description Logic reasoning for Semantic web ontologies”, Copyright 2011

ACM Copyright c 2011 ACM 978-1-4503-0148-0/11/05

[14]. Franz Baader and Werner Nutt, ”Basic Description Logics”, Edited by F. van Harmelen, V.

Lifschitz and B. Porter © 2008 Elsevier B.V. All rights reserved

[15].https://www.researchgate.net/figure/Architecture-of-a-knowledge-representation-system-based-

on-Description-Logics_fig1_2885808

[16]. Franz Baader and Werner Nutt, “Basic Description Logics”

[17]. Anni-Yasmin Turhan,”Description Logic reasoning for Semantic web ontologies”

[18].Daniele Nardi, Ronald J. Brachman,” An Introduction to Description Logics”

[19].Leif Harald Karlsen,” Description Logic 1: Syntax and Semantics”,2015

[20].Sebastian Rudolph, “Foundations of Description Logics”, c Springer-Verlag Berlin

Heidelberg 2011

 [21].Leif Harald Karlsen, Description Logic 1: Syntax and Semantics,2015

 [22]. Anni-Yasmin Turhan,”Description Logic reasoning for Semantic web ontologies”

 [23].http://www.lesliesikos.com/description-logics-and-first-order-logic/

53

24].Alessandro Artale and Diego Calvanese and Roman Kontchakov and Michael Zakharyaschev,

“The DL-Lite Family and Relations”,2009

[25].Ian Horrocks, DAML+OIL: a Description Logic for the Semantic Web

[26]. Domenico Lembo , Jose Mora , Riccardo Rosati1 , Domenico Fabio Savo1 and Evgenij

Thorstensen, “Mapping Analysis in Ontology-based Data Access: Algorithms and Complexity

(Extended Abstract)”

[27].Roman Kontchakov , Mariano Rodr´ıguez-Muro and Michael Zakharyaschev, “Ontology-Based

Data Access with Databases”, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

[28].” web Reasoning and Rule Systems”

[29].https://link.springer.com/chapter/10.1007/978-3-319-45246-3_38

[30].Thiago H. D. Araujo , Barbara T. Agena , Kelly R. Braghetto , Renata Wassermann, “OntoMongo

- Ontology-Based Data Access for NoSQL”, Instituto de Matem´atica e Estat´ıstica – Universidade de

S˜ao Paulo

[31].Domenico Lembo , Jose Mora , Riccardo Rosati , Domenico Fabio Savo , Evgenij Thorstensen,

“Mapping Analysis in Ontology-based Data Access: Algorithms and Complexity”

[32].https://academic.oup.com/comjnl/articleab stract/60/3/389/2609373?redirectedFrom=fulltex

[33]. H´ector P´erez-Urbina, Ian Horrocks, and Boris Motik, Efficient Query Answering for OWL 2

[34]. http://www.mathcs.duq.edu/simon/Fall04/notes-7-4/node6.html

[35].https://en.wikipedia.org/wiki/Class_diagram

[36].https://www.lucidchart.com/pages/uml-use-case-diagram

[37].Emina Torlak, UML Sequence Diagrams,2015

[38].https://en.wikipedia.org/wiki/Eclipse_(software)

[39].http://blog.saltlux.com/info center/%EC%98%A8%ED%86%A8%EB%A1%9C%EC%A7%80%EC%99%80-

%EC%B6%94%EB%A1%A0

 ملخص :

(جزءًا أساسياً من الويب الدلالي. في هذا OBDA) الانتولوجييعد نهج الوصول إلى قاعدة البيانات العلائقية المستندة إلى

. تتم كتابة هذا الاستعلام في مجموعة من الاستعلامات. يتم الرد على TBoxالأسلوب ، يحدد المستخدم استعلامًا ، مستخدمًا

بواسطة قاعدة بيانات علائقية ABox. في حالتنا ، يتم تمثيل ontology ABoxالاستعلامات التي تمت إعادة كتابتها باستخدام

 وقاعدة البيانات المقترحة. الأنتولوجي (بينmappingوعملية ربط)

هو استعلام قاعدة بيانات يجب أن تعود ليس فقط على البيانات التي يتم تخزينها في قاعدة البيانات بشكل واضح، OBDAميزة

من قبل عملية اعادة (ontological informationالانتولوجي)ولكن أيضا الحقائق الإضافية التي يمكن استنتاجها من المعلومات

 .الاستعلامات الكتابة

التي تقوم D. Calvanese في هذا العمل نستخدم الخوارزمية الاستعلام العديد من الخوارزميات لحل مشاكل إعادة كتابةهناك

. نناقش أيضًا اللغات الفرعية للغة الأنطولوجية على الإنترنت DL(. لهذا السبب ، نستكشف عائلات مختلفة من هذه DLعلى)

(OWL.وشرح علاقتها بمشكلتنا)

 :المفتاحية اتالكلم

OWL، OBDA ، DL ، البيانات قواعد

Abstract:

Ontology based relational data bases access approach (OBDA) is a crucial main of semantic

web. In that approach, the user specifies a query, using the TBox of the ontology. This query is

rewritten into a set of queries. The rewritten queries are answered using the ABox of the ontology

only. In our case the ABox is represented by a relational data base and a mapping process between the

ontology and a data base is proposed.

The advantage of the OBDA is that a database query then should return not only the data that

is stored explicitly in the database, but also additional facts that can be inferred from it using the

ontological information by rewriting process.

There are many algorithms for rewriting problem, in this work we use the algorithm of D.

Calvanese which is based on description logics (DL). For this reason, we explore different family of

such DL. We discuss also, sublanguages of ontology web languages (OWL) and explain their

relationship with our problem.

Key words:

Ontology, OWL, OBDA, DL, data bases.

Résumé :

 L'approche d'accès aux bases de données relationnelles basées sur l'ontologie (OBDA) est un

élément essentiel du web sémantique. Dans cette approche, l'utilisateur spécifie une requête, en

utilisant le TBox de l'ontologie. Cette requête est réécrite dans un ensemble de requêtes. Les requêtes

réécrites sont répondues en utilisant l'ABox de l'ontologie seulement. Dans notre cas, l'ABox est

représenté par une base de données relationnelle et un processus de mappage entre l'ontologie et une

base de données est proposé.

 L'avantage de l'OBDA est qu'une requête de base de données doit retourner non seulement les

données qui sont stockées explicitement dans la base de données, mais aussi des faits supplémentaires

qui peuvent être déduits à partir de l'information ontologique par le processus de réécriture.

 Il existe de nombreux algorithmes pour résoudre les problèmes de réécriture, dans ce travail

nous utilisons l'algorithme de D. Calvanese qui est basé sur des logiques de description (DL). Pour

cette raison, nous explorons différentes familles de ces DL. Nous discutons aussi, des sous-langages

des langages web d'ontologie (OWL) et expliquons leur relation avec notre problème.

Mots clés:

Ontologie, OWL, OBDA, DL, bases de données.

	1GENERAL INTRODUCTION.dotx.pdf
	GENERAL INTRODUCTION

	1Figures Tabl1 et table.dotx.pdf
	Figures Table:

