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GENERAL INTRODUCTION 

 

         In this thesis we will teak a new paradigm called Ontology-based data access (OBDA) 

which facilitates access to relational data, realized by linking data sources to ontology by 

means of declarative mappings. In the first chapter we talk about semantic web which is 

actually an extension of the current one in that it represents information more meaningfully 

for humans and computers alike. It enables the description of contents and services in 

machine-readable form, and enables annotating, discovering, publishing, advertising and 

composing services to be automated. It was developed based on Ontology, which is 

considered as the backbone of the Semantic Web. In other words, the current Web is 

transformed from being machine-readable to machine-understandable. In fact, Ontology is a 

key technique with which to annotate semantics and provide a common, comprehensible 

foundation for resources on the Semantic Web. Moreover, Ontology can provide a common 

vocabulary, a grammar for publishing data, and can supply a semantic description of data 

which can be used to preserve the Ontologies and keep them ready for inference. This chapter 

provides Architecture of semantic web and Components of Ontology,The Web Ontology 

Language Owl and defines the importance of ontologies .  In the second chapter we talk about 

description logic , a family of logic-based knowledge representation languages that can be 

used to represent the terminological knowledge of an application domain in a structured way. 

       It first it gives a short introduction of the ideas underlying Description Logics. Then it 

introduces syntax and semantics, covering the basic constructors can be used to build 

knowledge bases and I talked about a Big Family of description Logics. Finally, we touched 

DLLite which is forms the basis of OWL 2 QL that is latter is to be the language of choice for 

applications that use very large amounts of data and where query answering is the most 

important reasoning task.  

        In the last chapter we will talk about OBDA which as we previously knew it that is  In 

recent years, ontology-based data access (OBDA) has emerged as a promising and 

challenging application of ontologies. The idea is to enrich instance data with a ‘semantic 

layer’ in the form of an ontology, used as an interface for querying and to derive additional 

answers. A central research problem in this area is to design query answering engines that can 

deal with sufficiently expressive ontology languages yet scale to large data sets. The most 



popular ontology languages that have been considered for OBDA include the three profiles 

OWL2 RL, OWL2 QL, and OWL2 EL, as well as various description logics and data-log 

variants related to these profiles where OBDA system rewrites ontology and query to new 

data-log query for answering this new query with it we talk about rewriting query and 

algorithm the rewriting and the finally I talked about answering query . 
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The Semantic Web 

 

 

 

 

 

 

 



 

 

1 

1. Introduction  
 

        The Semantic Web is  an intelligent incarnation and advancement in World Wide Web to 

collect, manipulate and annotate the information by providing categorization[1]on a web-page 

and reprocesses it so that other machines including computers can understand the information. 

Semantic Web was part of Berners-Lee’s vision for the World Wide Web from the beginning 

(Berners-Lee ., 2001, Berners-Lee, 2003). 

         where he sees it as being an extension of the current World-Wide Web that will bring a 

common structure to the content of Web pages, thereby providing such content with meaning 

which will allow external software agents to carry out sophisticated tasks on behalf of the 

reader or user and, as such, promote a greater degree of cooperation between humans and 

computers. In so doing, a new age of computing will be ushered in where machines are better 

able to process and "understand" the data.  

This vision of a Semantic Web can therefore be viewed from three different perspectives: 

 a type of universal library which can readily be accessed and used by humans in their 

day-to-day information acquisition; 

  the backbone for software or computational agents to use autonomously in order to 

perform particular activities on behalf of their human counterparts;  

  a method for federating particular knowledge bases and databases to perform 

anticipated tasks for humans and their agents (Marshall and Shipman ). [2] 

        By using the descriptive technologies Resource Description Framework (RDF) and Web 

Ontology Language(OWL), and the data-centric, customizable Extensible Mark-up Language 

(XML).These technologies are combined in order to provide descriptions that supplement or 

replace the content of Web documents. Thus, content may manifest as descriptive data stored 

in Web-accessible databases, or as mark-up within documents (particularly, in Extensible 

HTML (XHTML) interspersed with XML, or, more often, purely in XML, with 

layout/rendering cues stored separately). The machine-readable descriptions enable content 

managers to add meaning to the content, i.e. to describe the structure of the knowledge we 

have about that content. In this way, a machine can process knowledge itself, instead of text, 

using processes similar to human deductive reasoning and inference, thereby obtaining more 



 

2 

meaningful results and facilitating automated information gathering and research by 

computers.[3] 

2. Architecture of semantic web: 
 

Figure 1 illustrates the architecture of the Semantic Web: 

 

Figure 1:Semantic Web architecture. 

2.1. Unicode: 

      Unicode provides a unique number for every character, independently of the underlying 

platform, program, or language. Before the creation of Unicode, there were various different 

encoding systems. The diverse encoding made the manipulation of data complex. Any given 

computer needed to support many different encodings. There was always the risk of encoding 

conflict, since two encodings could use the same number for two different characters, or use 

different numbers for the same character. Examples of older and well known encoding 

systems include ASCII and EBCDIC.[4] 

• ASCII – 7 bit, 128 characters (a-z, A-Z, 0-9, punctuation)  

• Extension code pages – 128 chars (ß, Ä, ñ, ø, Š, etc.)[4] 

2.2. URI: 

        A universal resource identifier (URI) is a formatted string that serves as a means of 

identifying abstract or physical resource. A URI can be further classified as a locator, a name, 
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or both. Uniform resource locator (URL) refers to the subset of URI that identifies resources 

via a representation of their primary access mechanism. An uniform resource name (URN) 

refers to the subset of URI that is required to remain globally unique and persistent even when 

the resource ceases to exist or becomes unavailable. For example:[4] 

–http://www.ietf.org/rfc/rfc3986.txt  

–mailto:John.Doe@example.com  

–news:comp.infosystems.www.servers.unix  

– telnet://melvyl.ucop.edu/ 

The URL http://dme.uma.pt/jcardoso/index.htm identifies the location from where a Web 

page can be retrieved. 

• The generic form of any URI is scheme: [//authority] [/path] [?query] [#fragid] 

 – The scheme distinguishes different kinds of URIs,  The scheme lays out the concrete 

syntax and any associated protocols for the URI. Schemes are case-insensitive and are 

followed by a colon. Ideally, URI schemes should be registered with the Internet Assigned 

Numbers Authority (IANA)Examples of popular schemes include http, https, ftp ,mailto, file 

,data and irc, although nonregistered schemes can also be used. 

 – Authority normally identifies a server , An authority component is made up of multiple 

parts: an optional authentication section, a host -- consisting of either a registered name or an 

IP address -- and an optional port number. The authentication section contains the username 

and password, which are separated by a colon and followed by the symbol for at (@). After 

the @ comes the hostname, which is in turn followed by a colon and then a port number. 

– Path normally identifies a directory and a file, The path contains data, is notated by a 

sequence of segments separated by slashes. The path must begin with a single slash if an 

authority part was present. It may also begin with a single slash even if there is no authority 

part, but it cannot begin with a double slash. Keep in mind that while this part of the syntax 

may closely resemble a particular file path, it does not always imply a relation to that file 

system path. 

 – Query adds extra parameters ,it contains a string of nonhierarchical data. Although the 

syntax is not well-defined, it is most often a sequence of attribute value pairs separated by a 
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delimiter, such as an ampersand or a semicolon. The query is separated from the preceding 

part by a question mark. 

– Fragment ID identifies a secondary resource, it  contains a fragment identifier that provides 

direction to a secondary resource. For example, if the primary resource is an HTML 

document, the fragment is often an ID attribute of a specific element of that document. If the 

fragment identifies a certain section of an article identified by the rest of the URI, a Web 

browser will scroll this particular element into view. The fragment is separated from the 

preceding part by a hash (#).[51] 

2.3. Extensible Markup Language (XML): 

       Is a markup language, which means that it is machine-readable and has its own format. It 

is widely known in the WWW community because it has a flexible text format and was 

designed to describe data and to meet the challenges of large-scale e-business and electronic 

publishing; it plays an important role in exchanging different types of data on the Web. In 

fact, it is the basis of a rapidly growing number of software development activities. Each 

document starts with a namespace declaration using XML Namespace.[4] 

Syntax: 

<name>contents</name> 

 –<name> : is called the opening tag  

–</name> : is called the closing tag 

 • Examples for xml: 

<gender>Female</gender> 

<story>Once upon a time there was…. </story> 

• Element names case-sensitive 

Name/value pairs, part of element contents 

• Syntax <name attribute_name="attribute_value">contents</name> 

 • Values surrounded by single or double quotes 
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 • Example 

<temperature unit="F">64</temperature> 

<swearword language='fr'>con</swearword> 

Empty element: <name ></name> 

 • This can be shortened:<name/> 

 • Empty elements may have attributes 

 • Example<grad value=’A’/>  

XML namespace and XML schema definitions makes sure that there is a common syntax 

used in the semantic Web. XML namespaces allow specifying different markup vocabularies 

in one XML document. XML schema serves for expressing schema definition of a particular 

XML document.[6] 

Example for xmlns: 

Use “xmlns” attribute 

Named prefix : 

<a:foo xmlns:a=‘http://example.com/NS’/> 

Default prefix : 

<foo xmlns=‘http://example.com/NS’/> 

2.4.The Resource Description Framework (RDF) and RDF Schema: 

       On top of XML is RDF that is a framework for using and representing metadata and 

describing the semantics of information about resources on the Web in a machine-accessible 

way. It uses URIs to identify Web resources and to describe the relations between these 

resources, using a graph model. While describing classes of resources and the properties 

between them, using RDF Schema (which is a simple modeling language), it also provides a 

simple reasoning framework for inferring types of resources. 

       RDF Schema (RDFS) defines the vocabulary of RDF model. It provides a mechanism to 

describe domain-specific properties and classes of resources to which those properties can be 
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applied, using a set of basic modeling primitives (class, subclass-of, property, subproperty-of, 

domain, range, type). However, RDFS is rather simple and it still does not provide exact 

semantics of a domain.[8] 

Information is represented by triples subject-predicate-object in RDF. An example of a triple 

is shown in the figure below. It says that "Joe Smith has homepage 

http://www.example.org/~joe". All elements of this triple are resources defined by URI. The 

first resource http://www.example.org/~joe/contact.rdf#joesmith(subject) is intended to 

identify Joe Smith. Note that it precisely defines how to get to a RDF document as well as 

how to get the joesmith RDF node in it. The second resource 

http://xmlns.com/foaf/0.1/homepage (predicate) is the predicate homepage from a FOAF 

(Friend-of-a-friend) vocabulary. The last resource (object) is Joe's homepage 

http://www.example.org/~joe/. 

 

Figure 2:RDF triple (in graph representation) describing Joe Smith - "Joe has homepage 

identified by URI http://www.example.org/~joe/" 

     All of the elements of the triple are resources with the exception of the last element, object, 

that can be also a literal. Literal in the RDF sense is a constant string value such as string or 

number. Literals can be either plain literals (without type) or typed literals typed using XML 

Datatypes. An example of literal usage is illustrated in the triple shown in the figure below. 

 

Figure 3:RDF triple (in graph representation) describing Joe Smith - "Joe has family name 

Smith"[9]. 
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2.5.Ontology Vocabulary: 

      Ontology comprises a set of knowledge terms, including the vocabulary, the semantic 

interconnections, simple rules of inference and logic for some particular topic. Ontologies 

applied to the Web are creating the semantic Web. Ontologies facilitate knowledge sharing 

and provide reusable Web contents, Web services, and applications. Few of the ontology 

languages are DAML (DARPA Agent Markup Language), OIL (Ontology Interference 

Layer) and OWL (Web Ontology Language). OWL is developed starting from description 

logic and DAML+OIL. OWL is a set of XML elements and attributes, with well-defined 

meaning, that are used to define terms and their relationships (e.g. Class, equivalentProperty, 

intersectionOF, unionOF, etc.). OWL elements extend the set of RDF and RDFS elements, 

and the OWL namespace is used to denote OWL encoding. OWL comes in three species – 

OWL Lite for taxonomies and simple constraints, OWL DL for full description logic support 

and OWL Full for maximum expressiveness and syntactic freedom of RDF. OWL DL is 

widely used for ontology representation. In practice, ontologies are often developed using 

integrated, graphical, ontology authoring tools, such as Protégé, OILed and OntoEdit. Protégé 

facilitates extensible infrastructure and allows an easy construction of knowledge rich domain 

ontologies[4]. 

Ex : 

Ontology: <http://example.org/tea.owl> 

Class: Tea 

2.6. Logic and Proof: 

      The logic layer consists of logic-based rules that can serve as extensions of, or alternatives 

to, description logic based ontology languages; and can be used to develop declarative 

systems on top of (using) ontologies. The logic layer is accompanied by the proof layer which 

contains all the necessary inference mechanisms that manipulate the rules of the logic layer 

and, furthermore, explicitly expose the proofs of inferences in order to generate explanations 

between proof systems, agents and humans. [52] 

2.7. Trust: 

      Is the final layer of the Semantic Web. This component concerns the trustworthiness of 

the information on the Web in order to provide an assurance of its quality. [5] 
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3.The goal of semantic web: 
 

       The goal of semantic web research is to allow the vast range of web-accessible 

information and services to be more effectively exploited by both humans and automated 

tools. To facilitate this process, RDF and OWL have been developed as standard formats for 

the sharing and integration of data and knowledge the latter in the form of rich conceptual 

schemas called ontologies. These languages, and the tools developed to support them, have 

rapidly become standards for ontology development and deployment; they are increasingly 

used, not only in research labs, but in large scale IT(Information Technologies) projects. 

Although many research and development challenges still remain, these “semantic web 

technologies” are already starting to exert a major influence on the development of 

information technology.[6] 

4.Ontologies:  
 

       Ontology : all the objects recognized as existing in the domain. To build an ontology, it is 

also to decide on the way of being and to exist objects. To continue towards a definition of 

ontology, it seems to us essential to remind that the works on the ontologies are developed in 

an IT context that is the case, for instance, for Engineering of knowledge, Artificial 

intelligence or, more specifically here, the context of Semantics Web where the final goal is to 

specify an IT artifact. In this context, the ontology becomes then a model of the existing 

objects which makes a reference to it through concepts of the domain. 

      The ontology is a theory on the representation of the knowledge. As indicated in 2000, the 

ontology “defines the kinds of things that exist in the application domain”. It is by this theory 

that it unifies in the domain of the computing. The ontology “is a formal, explicit 

specification of a shared conceptualization” (Gruber, 1993). For the IT specialist of semantic 

web, the ontology is a consensual model, because the conceptualization is shared and brings 

then to build a linguistic specification with the vocabulary RDF/RDFS and the language 

OWL. In the semiotic perspective, conceptualization according to Gruber relates to the 

domain of the speech because it is the abstraction. The domain of the speech takes place of 

the referent. In semiotics, we shall say that the ontology symbolizes the conceptualization, the 

terms, the notions and the relations which are conceptualized. [7] 
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   Ontologies : play an important role in achieving interoperability across organizations and on 

the Semantic Web , because they aim to capture domain knowledge and their rule is to create 

semantics explicitly in a generic way, providing the basis for agreement within a domain. 

Ontology is used to enable interoperation between Web applications from different areas or 

from different views on one area. For that reason, it is necessary to establish mappings among 

concepts of different ontologies to capture the semantic correspondence between them. 

     An ontology is a specification of a conceptualization .The  ontology defines a set of 

representational are typically classes (concepts), attributes (or properties), and relationships 

(or relations among class members). [7] 

    A concept can be an object of any sort: person, car, can describe an activity or state: 

swimming, Work ,Exam. an represent abstract concepts like time or value. There is no strict 

restriction what can express as a concept in our ontology. 

    A relationship in an ontology represents a way in which two concepts, two things, can be 

connected to each other :Train needs Rails .characteristics of objects: Fatma is Woman. 

5.Components of Ontology: 
 

      Contemporary ontologies share many structural similarities, regardless of the language in 

which they are expressed. Most ontology describes individuals (instances), classes (concepts), 

attributes, and relations. Common components of ontologies include: 

Individuals: Elements represented by individuals or instances are terms not included in the 

class. 'Person' is a class, but 'John Smith' is an instance. 

 Classes: Sets, collections, concepts, classes in programming, types of objects, or kinds of 

things.  

Relations: Elements represented by relationships or attributes are used to describe the 

relationship between two terms. 

Function terms: A function is a special type of relationship, meaning that a term has a 

restriction on its number in relation to other terms. For example, 'mother' has a relationship 

with the concept of 'woman', one of the concepts of 'people'. A function can be referenced to a 

slot if it is applicable to only two terms. 
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Restrictions: Formally stated descriptions of what must be true in order for some assertion to 

be accepted as input. 

Axioms: The axiom is a sentence composed of First Order Logic, which is found to be "true" 

and is not proven. Structurally, you can refer to a statement that can not be expressed as a slot 

or value. Axiom must use prefix notation. '=>' Is a logical implementation, '<=>' means 

logically equivalent, and there are notations that can express connection, separation, negation, 

Variables must begin with '?' And free variables are assumed to be quantified. [1] 

 

Figure 4: Components of Ontology. 

6. Use of ontologies: 
       In A  knowledge in computer systems is thought of as something that is explicitly 

represented and operated on by inference processes .Any software that does anything useful 

cannot be written without a commitment to a model of the relevant world—to entities, 

properties, and relations in that world. Data structures and procedures implicitly or explicitly 

make commitments to a domain ontology.[8] 

     Information-retrieval systems, digital libraries, integration of heterogeneous information 

sources, and Internet search engines need domain ontologies to organize information and 

direct the search processes.[8] 

     For example, a search engine has categories and subcategories that help organize the 

search. The search-engine community commonly refers to these categories and subcategories 

as ontologies. Object-oriented design of software systems similarly depends on an appropriate 

domain ontology. Object systems representing a useful analysis of a domain can often be 

reused for a different application program. Object systems and ontologies emphasize different 

aspects.[8] 
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     As information systems model large knowledge domains, domain ontologies will become 

as important in general software systems as in many areas of AI. In AI, while knowledge 

representation pervades the entire field. [8] 

7. The Web Ontology Language Owl: 
 

     OWL Web Ontology Language is designed for use by applications that need to process the 

content of information instead of just presenting information to humans. Although already 

recognizable as an ontology language, the capabilities of RDF and RDF Schema (RDF-S)  are 

rather limited: they do not, for example, include the ability to describe cardinality constraints, 

a feature found in most conceptual modeling languages, or to describe even a simple 

conjunction of classes. OWL facilitates greater machine interpretability of Web content by 

providing additional vocabulary along with a formal semantics  OWL has three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full as shown below(figure 5).This 

layering is motivated by different requirements that different users and developers have for a 

Web ontology language: 

 

Figure5:Classification according to expression area of OWL. [50] 

7.1.RDF/XML: 

      Is the most common and recommended syntax for OWL 2 documents, which are intended 

for those users primarily needing a classification hierarchy with typing of properties and 

meta-modeling facilities; The most elementary building block of RDF(S) is a class, which 

defines a group of individuals that belong together because they share some properties. The 

following states that an instance e belongs to a class c: 

����������(�����(�)) (“����������”) 
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The second elementary statement of RDF(S) is the subsumption relation between classes subClassOf: 

����������(����) 

In RDF, instances are related to other instances through properties:  

In��������(�������(���)) 

 Properties are characterized by their domain and range: 

��������������(�������(��)�����(��)) 

 just as with classes, properties are organised in a subsumption hierarchy: 

�������������(�� ∶  ���� ∶  ��) 

   RDF and RDFS allow the representation of some ontological knowledge. The main 

modeling primitives of RDF/RDFS concern the organization of vocabularies in typed 

hierarchies: subclass and subproperty relationships, domain and range restrictions, and 

instances of classes. 

 

7.2.OWL Full: 

      The entire language is called OWL Full, and uses all the OWL languages primitives . It 

also allows to combine these primitives in arbitrary ways with RDF and RDF Schema. This 

includes the possibility (also present in RDF) to change the meaning of the pre-defined (RDF 

or OWL) primitives, by applying the language primitives to each other. For example, in OWL 

Full we could impose a cardinality constraint on the class of all classes, essentially limiting 

the number of classes that can be described in any ontology. The advantage of OWL Full is 

that it is fully upward compatible with RDF, both syntactically and semantically: any legal 

RDF document is also a legal OWL Full document, and any valid RDF/RDF Schema 

conclusion is also a valid OWL Full conclusion. 

     The disadvantage of OWL Full is the language has become so powerful as to be 

undecided, dashing any hope of complete (let alone efficient) reasoning support.  

7.3.OWL DL: 

      In order to regain computational efficiency, OWL DL (short for: Description Logic) is a 

sublanguage of OWL Full which restricts the way in which the constructors from OWL and 
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RDF can be used. but roughly this amounts to disallowing application of OWL’s constructor’s 

to each other, and thus ensuring that the language corresponds to a well studied description 

logic. The advantage of this is that it permits efficient reasoning support. The disadvantage is 

that we lose full compatibility with RDF: an RDF document will in general have to be 

extended in some ways and restricted in others before it is a legal OWL DL document. 

Conversely, every legal OWL DL document is still a legal RDF document. 

It is often useful to say that two classes are disjoint: 

���������������(����)  

OWL DL allows arbitrary Boolean algebraic expressions on either side of an equality of 

subsumption relation: 

����������(���������(����)) 

ci is not subsumed by either cj or ck, but is subsumed by their union. Similarly  

�����������������(����������������(����)) 

OWL DL completes the Boolean algebra by providing a construct for negation: 

������������(����) 

7.4.OWL Lite: 

      An ever further restriction limits OWL DL to a subset of the language constructors. For 

example, OWL Lite excludes enumerated classes, disjointed statements and arbitrary 

cardinality (among others). The advantage of this is a language that is both easier to grasp (for 

users) and easier to implement (for tool builders). The disadvantage is of course a restricted 

expressivity. 

equality are possible in OWL Lite: 

��������������(����) 

     through a pair of mutual Subclassof or SubPropertyOf statements), this can be done 

directly in OWL Lite: 

�����������������(����) ��������������������(����) 

 inequality must be explicitly stated, as: 
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��������������������(����) 

OWL Lite provides an abbreviated form: 

��������������������(�� . . . ��) 

 The relationship between such pairs of properties is established by stating: 

��������������(�����������(��)) 

     Other vocabulary in OWL Lite (TransitiveProperty and SymmetricProperty are modifying 

a single property, rather then establishing a relation between two properties: [9] 

��������������(�� ∶  ������������)  

��������������(�� ∶  �����������) 

7.4.1.OWL 2 EL: 

    Is based on the description logic EL. It enables polynomial time algorithms for all the 

standard reasoning tasks; it is particularly suitable for applications where very large 

ontologies are needed, and where expressive power can be traded for performance 

guarantees.[10] 

7.4.2. OWL 2 QL: 

       Is based on description logics similar to DL-Lite . It is one of three profiles of the Web 

Ontology Language OWL 2, was designed with the aim of supporting ontology-based data 

access (OBDA). The key idea is that data, ‘stored in a standard relational database 

management system (RDBMS), can be queried through an OWL 2 QL ontology via a simple 

rewriting mechanism, i.e., by rewriting the query into an SQL query that is then answered by 

the RDBMS, without any changes to the data’ (www.w3. org/TR/owl2-profiles). The 

rewritability property ensures, in particular, that the data complexity of answering queries 

over OWL 2 QL ontologies matches the complexity of database query answering, which is in 

AC0.[10] 

7.4.3.OWL 2 RL: 

        Enables the implementation of polynomial time reasoning algorithms using rule-

extended database technologies operating directly on RDF triples; it is particularly suitable for 

applications where relatively lightweight ontologies are used to organize large numbers of 

individuals and where it is useful or necessary to operate directly on data in the form of RDF 

triples. [10] 
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8.Why are ontologies important? : 
     Without ontologies, or the conceptualizations that underlie knowledge, there cannot be a 

vocabulary for representing knowledge. Thus, the first step in devising an effective 

knowledge representation system, and vocabulary, is to perform an effective ontological 

analysis of the field, or domain. Weak analyses lead to incoherent knowledge bases.  

Clarifying the terminology enables the ontology to work for coherent and cohesive reasoning 

purposes 

Ontologies enable knowledge sharing. Suppose we perform an analysis and arrive at a 

satisfactory set of conceptualizations, and their representative terms, for some area of 

knowledge for example, the electronic-devices domain. The resulting ontology would likely 

include domain-specific terms such as transistors and diodes; general terms such as functions, 

causal processes, and modes; and terms that describe behavior such as voltage. The ontology 

captures the intrinsic conceptual structure of the domain.  

      In order to build a knowledge representation language based on the analysis, we need to 

associate terms with the concepts and relations in the ontology and devise a syntax for 

encoding knowledge in terms of the concepts and relations.[11] 

        We can share this knowledge representation language with others who have similar 

needs for knowledge representation in that domain, thereby eliminating the need for 

replicating the knowledge-analysis process. Shared ontologies can thus form the basis for 

domain-specific knowledge-representation languages. Shared ontologies let us build specific 

knowledge bases that describe specific situations. For example, different electronic devices 

manufacturers can use a common vocabulary and syntax to build catalogs that describe their 

products. Then the manufacturers could share the catalogs and use them in automated design 

systems. This kind of sharing vastly increases the potential for knowledge reuse.[11] 

9. CONCLUSION: 

 The goal of semantic web research is to enable the vast range of web-accessible information and 

services are given a well defined meaning. The semantic Web is a Web for machines, but the 

process of creating and maintaining it is a social one. To make possible the creation of the 

semantic Web the W3C has been actively working on the definition of open standards, such as 

the RDF and OWL. Although machines are helpful in manipulating symbols according to pre-

defined rules, only the users of the semantic Web have the necessary interpretative and 
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associative capability for creating and maintaining ontologies. The principal benefit of semantics 

is that it provides a formal foundation for reasoning about the properties of systems that do 

automated knowledge translation based on sharing of ontology. Developers are vigorously 

building semantic Web services.  

The goal of an ontology is to achieve a common and shared knowledge that can be 

transmitted between people and between application systems. Thus, ontologies play an 

important role in achieving interoperability across organizations and on the Semantic Web, 

because they aim to capture domain knowledge and their role is to create semantics explicitly 

in a generic way, providing the basis for agreement within a domain. Thus, ontologies have 

become a popular research topic in many communities. In fact, ontology is a main component 

of this research; therefore, the definition, structure and the main operations and applications 

of ontology are provided. 
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1. INTRODUCTION: 

 Description logics (DLs): are a family of formal knowledge representation 

(KR) languages[20],which is   among the most important formalisms for ontological 

modeling today, which is also due to their central role for the semantics of the Web Ontology 

Language OWL. that can be used to represent the terminological knowledge of an application 

domain in a structured way. [12] 

    DLs  are built from atomic concepts and atomic roles . Such description can be use in 

axioms and assertions of DL Knowledge bases and can be reasoned about write DL 

knowledge based by DL Systems. 

   Description Logics support inference patterns that occur in many applications of intelligent 

information processing systems, and which are also used by humans to structure and 

understand the world: classification of concepts and individuals. 

 Classification of concepts determines subconcept/superconcept relationships (called 

subsumption relationships in DL) between the concepts of a given terminology, and 

thus allows one to structure the terminology in the form of a subsumption hierarchy. 

 Classification of individuals (or objects) determines whether a given individual is 

always an instance of a certain concept. [13] 

2. Definition of the basic formalism: 

 A knowledge base (KB) comprises two components, the TBox and the ABox: 

 

Figure 6:Architecture of a knowledge representation system based on Description Logics. 

[23] 
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 The TBox introduces t²he terminology, i.e., the vocabulary of an application domain. 

 The ABox contains assertions about name  individuals in terms of this vocabulary. 

2.1.The TBox : 

   One key element of a DL knowledge base is given by the operations used to build the 

terminology. Such operations are directly related to the forms and the meaning of the 

declarations allowed in the TBox.  

   The TBox can be used to assign names to complex descriptions. The language for building 

descriptions is a characteristic of each DL system, and different systems are distinguished by 

their description languages. [14] 

   The basic form of declaration in a TBox is a concept definition, that is, the definition of a 

new concept in terms of other previously defined concepts. For example, a woman can be 

defined as a female person by writing this declaration: 

                                                  Woman≡Person ∩Female 

     That declaration is usually interpreted as a logical equivalence which amounts to providing 

both sufficient and necessary conditions for classifying an individual as a Woman. This form of 

definition is  strength of this kind of declaration is usually considered a characteristic feature of 

DL knowledge bases.[14] 

 the below figure (figure 7 )  illustrates how convert natural language into TBox inference 

 

Figure 7: DL-based TBOX inference. 

DL terminologies:  

_ Only one definition for a concept name is allowed.  
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_ Definitions are acyclic in the sense that concepts are neither defined in terms of themselves 

nor   in terms of other concepts that indirectly refer to them.  

TBox  Axiomes:  

    A name can be assigned to a concept description by a concept definition. For instance, we 

can write Tutorial ≡  ����� ⊓  ∃ �������. �������� ⊓  ∃ ℎ�������. ⊤ to supply a concept 

definition for the concept Tutorial. Let A be a concept name and C, D be (possibly) complex 

concept description: 

• A concept definition is a statement of the form equivalent A ≡ C.  

• A general concept inclusion (GCI for short) is a statement of the form C ⊑ D. 

 It is easy to see that every concept definition A ≡ C can be expressed by two GCIs: A ⊑ C 

and C ⊑ A. The terminological information expressed by GCIs is collected in the so-called 

TBox, which is simply a finite set of GCIs. [15] 

In the figure 8 and figure 9 DL Syntax and Example for illustrates the Tbox axioms. 

 

Figure8: Axiom of OWL 

 

Figure 9:OWL CLASS CONSTRUCTOR. 

2.2.The ABox: 

    The ABox contains extensional knowledge about the domain of interest, that is, assertions 

about individuals, usually called membership assertions. For example: 
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                                                        Female ∩ Person(fatma) 

    states that the individual fatma is a female person. Given the above definition of woman, 

one can derive from this assertion that fatma is an instance of the concept Woman. 

��������(�����, �������) 

   specifies that fatma has mohamed as a child. Assertions of the first kind are also called 

concept assertions, while assertions of the second kind are also called role assertions. 

In the ABox, one describes a specific state of affairs of an application domain in terms of 

concepts and roles. 

the figure 10 illustrates how the convert the  natural language into ABox inference : 

 

Figure 10: DL-based ABOX inference. 

 

Some of the concept and role atoms in the ABox may be defined names of the TBox. [16] 

  ABox assertions:  

An individual assertion can have any of the following forms: 

 • C(a), called concept assertion, 

 • R(a, b), called role assertion,  

 • ¬R(a, b), called negated role assertion,  

 • a = b, called equality statement 

• � ≠ �, called inequality statement [17] 

 

3. The basic description formalism : 

 A:  Atomic Concept 

⊤  : Universal Concept       
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⊥  : Bottom concept 

 ¬C : Negation 

 � ⊔ � : Union  

� ⊓ � : Intersection 

∃R.C : existential restriction 

∀R.C :  Universal restriction 

where A is an atomic concept, C and D are concepts, and  R is a role. [18] 

4. Semantics : 

     The semantics of description logics is defined in a model-theoretic way. Thereby, one 

central notion is that of an interpretation. Interpretations might be conceived as potential 

“realities” or “worlds.” In particular, interpretations need in no way comply with the actual 

reality. [29] 

4.1. Interpretation: 

An interpretation � =  (��,·�) consists of anon-empty set ��, the domain of I, and a valuation 

function ·I that maps: 

1. Each individual � ∈ �� to an element � � ∈  ��, 

2. each concept name � ∈  �� to a set � � ⊆  ��, 

3. each role name � ∈  �� to a binary relation ��  ⊆  �� ×  �� 

4. for the special concepts names, if present, we have ⊤�  =  ��and ⊥�=  ∅. 

A DL vocabulary is in fact a FOL signature, that contains no function symbols and no 

variables, but only constants (��) and predicates of arities one (��) and two (��). 

Interpretations are just standard Tarski-style interpretations as in FOL[17] 

Example 1: 

-The role names hasParent, hasFather, hasMother,  . . . 

– The concept names Parent, Mortal,  Male, Female,  . . . 

– The individual names fatma, mohamed, , … 
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DL 

 

  Interpretations 

 

DL name 

 A �(�) ⊆ �(△) Primitive concept 

R �(�) ⊆ �(△) ∗ �(△) Primitive role 

⊤ �(△) Top 

⊥ � Bottom 

¬C �(△)/�(�) Complement 

� ⊔ � �(�) ∪ �(�) Conjunctive 

� ⊓ � �(�) ∩ �(�) Disjunctive 

∃R.C {�|∃�. �(�, �) ∈ �(�)⋀�(�) ∈ �(�)} Existential quantitative 

∀R.C   {x | ∀y. I(x, y) ∈ I(R) → y∈ I(C)} Universal quantitative 

 

Table 1:Translation between interpretation and DL. 

 

4.1.1. The semantics of TBox Axiomes: 

 

     Is defined as one would expect. An interpretation I satisfies an inclusion � ⊑ � if�(�) ⊆

�(�), and it satisfies an equality C ≡ D if (�) = �(�). 

 If � is a set of axioms, then � satisfies � iff � satisfies each element of �. If � satisfies an 

axiom , then we say that it is a model of this axiom . Two axioms or two sets of axioms are 

equivalent if they have the same models. 

4.1.2. Semantics of ABox assertion: 

 The interpretation� satisfies the concept assertion C(a) if �(�) ∈ �(�) , and it satisfies the role 

assertion R(a, b) if �(�, �) ∈ �(�). An interpretation satisfies the ABox A if it satisfies each 

assertion in A. In this case we say that I is a model of the assertion or of the ABox. 

 

5. DESCRIPTION LOGICS, A BIG FAMILY OF LOGICS : 

We will give a general introduction to Big Family Description Logics: 
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5.1.The Basic Description Logics ALC and ALCH: 

The semantics of description logics is defined in a model-theoretic way. Thereby, one 

central notion is that of an interpretation. Interpretations might be conceived as potential 

“realities” or “worlds.” In particular, interpretations need in no way comply with the actual 

reality. 

Concepts and Roles. We start with the syntax of concepts and roles. ALC and ALCH do not 

support any role constructors, that is, only role names p are roles. On the other hand, they 

provide the five ‘basic’ concept constructors: negation ¬C, conjunction �1 ⊓  �2, disjunction 

�2 ⊔  �2, and existential and universalrestrictions which are expressions of the form ∃�. � 

and∀�. �, respectively. 

Definition 2 (ALCH concepts and roles). Each role name p ∈ N�is a role. 

Concepts C obey the following grammar, where A ∈ N� and p is a role: 

�, �1, �2 ∷=  � | ¬� | �1 ⊓  �2 | �2 ⊔ �2 | ∃�. � | ∀�. � 

In ALC and all its extensions, the special names and ⊥ can be simulated usinga tautological 

concept of the form � ⊔  ¬�and a contradictory concept of theform � ⊔ ¬�, respectively, so 

it makes no difference whether we assume thatthey are present in the signature or not. 

Concepts of the form ∃�. ⊤are usually called unqualified existential restrictions, and written 

∃�. 

Assertions and Axioms Using these concepts and role expressions, we can write different 

kinds of statements. These may also vary in different DLs, but in general, they can be  

classified into two different kinds: 

– At the extensional level, we can state that a certain individual participate in some concept, 

or that some role holds between a pair of individuals; wecall this kind of statement ABox 

assertions. A finite set of this assertions is called an ABox. 

At the intentional level, we can specify general properties of concepts and roles, constraining 

the way they are interpreted and defining new concepts and roles in terms of other ones. We 

call these kinds of statements TBox axioms, and a TBox is a finite set of them. TBox are also 

called terminologies. 

ABox assertions and TBox axioms together form a knowledge base (KB). 

Ontologies The term ontology is used frequently, but it does not have a fixed, formally 

defined meaning. It is used both as a synonym for TBox, or as a synonym for KB. We adopt 

the former use, i.e., an ontology is just a terminology. 
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   This meaning is perhaps more frequent, particularly in the context of ontology based data 

access that we will discuss in the next chapter. 

We now define the assertions and axioms of the basic DL ALCH. 

 

Definition 3 (ALCH  ABox assertions and TBox axioms). For ALCH, assertions and axioms 

are defined as follows. 

ABox assertions: 

– If C is a concept and a ∈  N� is an individual, then C(a) is a concept membership assertion. 

– If p is a role and a, b ∈ N�are individuals, then p(a, b) is a role membership assertion. 

– If a, b ∈ N� are individuals, then a ≉  b is an inequality assertion. 

TBox axioms: 

– If C1 and C2 are concepts, then C1 ⊑  C2 is a general concept inclusion 

axiom (GCI). 

– If p1 and p2 are roles, then p1 ⊑   p2 is a role inclusion axiom (RIA). 

Assertions and axioms for ALC are defined analogously, but RIAs p1 ⊑  p2 are 

disallowed. 

Knowledge Bases. Now we can define knowledge bases, which are composed by a set of 

ABox assertions, the ABox, and a set of TBox axioms, the TBox. 

The definition of these components is the same for all DLs. 

Definition 4 (ABoxes,  TBoxes,  Knowledge bases). For every DL L, we define: 

– An ABox in L is a finite set of ABox assertions in L. 

– A TBox in L is a finite set of TBox axioms in L. 

– An knowledge base (KB) in L is a pair � = < �, � >, where A is an ABox in 

L and T is a TBox in L. 

TBox:  

������ ⊑  �������ℎ��� 

 ������ ≡  ������ ⊓  ∀ℎ��������. ������ 

����� ≡  ������ ⊓  ∀ℎ��������. �����  

���� ≡  ������ ⊓  ∃ℎ��������. ����� ⊓  ∃ℎ��������. ������  

∃ℎ��������. ���� ⊑⊥ 

ABox:  

Horse(Mary)  

Mule(Peter)  

Donkey(Sven)  
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hasParent(Peter, Mary)  

hasParent(Peter, Carl) 

 hasParent(Sven, Hannah)  

hasParent(Sven, Carl) [30] 

Definition 5 (semantics of ALCH concepts). Let I = (ΔI, ·I) be an interpretation. The 

function ·I is inductively extended to all ALCH concepts as follows: 

(¬�)� =  �� \�� 

�1 ⊓  �2)�  =  �1�  ∩  �2� 

(�1 ⊔  �2)� =  �1�  ∪  �2� 

(∃�. �)� =  {� | ∃�′. (�, �′)�  ∈  �� ∧  (��)� ∈  ��} 

(∀�. �)�  =  {� |∀��. (�, ��)�  ∈  � � → (��)� ∈  ��} 

 

      Now that we have fixed the semantics of concepts and roles, we can define the satisfaction 

of assertions and axioms. This is done in a natural way. The symbol ⊑in the TBox axioms is 

understood as an  relation. That is, a concept inclusion C1 ⊑ C2 indicates that every object 

that is C1 is also C2, or to be more precise, that every object that participates in the 

interpretation of concept C1 also participates in the interpretation of concept C2. Similarly, a 

role inclusion �1 ⊑  �2 indicates that every pair of objects that participates in p1 also 

participates in p2. Concept and role membership assertions in the ABox simply state that (the 

interpretation of) an individual participates in (the interpretation of) a concept, and that a pair 

of individuals participates in a role, respectively. 

An assertion of the form � ≉  �states that the individuals a and b cannot be interpreted as the 

same domain element. This is closely related to the unique name assumption (UNA), 

sometimes made in related formalisms. Under the UNA, each interpretation I must be such 

that �� =  ��only if a = b, that is, one domain element cannot be the interpretation of two 

different individuals. In DLs the common practice is not to make the UNA. This setting is 

more general and, if desired, the UNA can be enforced by adding assertions � ≉  �for 

eachrelevant pair of individuals. 

5.2.Expressive and Lightweight DLs: 

    The term lightweight DLs refers to logics that are based on fragments of ALC and restrict 

its expressivity to achieve lower complexity, enabling the realization of efficient and scalable 

algorithms. The most prominent lightweight DLs are the DL-Lite and EL families underlying 

the OWL QL and RL profiles, respectively.  
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5.3.The SH Family: 

       SHOIQ is a very expressive DL that is closely related to the Web Ontology Language 

standard known as OWL-DL . SHOIQ supports the vast majority of the common DL 

constructors, and hence most popular DLs can be defined assublogics of it. 

 

Definition 8 (SHOIQ concepts and roles). Atomic concepts B, concepts C and (atomic) roles 

P, S obey the following grammar, where � ∈  ��, � ∈  ��,� ∈  ��, ��� � ≥  0: 

 

� ∷=  � | {�} 

�, �1, �2 ∷=  � | ¬� | �1 ⊓  �2 | �1 ⊔ �2 | ∃�. � | ∀�. � |  ≥  � �. � | ≤   � �. � 

�, � ∷=  � | �� 

      The inverse of � ∈  �� is ��, and the inverse of �� �� �. To avoid expressions such 

as(��)�, we denote by ���(�) the inverse of the role P. Concepts of the form {a} are called 

nominal, while concepts  ≥ � �. � and  ≤ � �. � are called(qualified) number restrictions 

(NRs). 

       If a number restriction is of the form  ≥ n S. or  ≤ n S., it is called unqualified and can be 

written simply  ≥ n S. or  ≤ n S. 

In addition to the new role constructor ��and the new concept constructors{a},   

≥ n S.  and  ≤ n S, SHOIQ extends ALCH with another kind of axioms. 

 

Definition 9 (SHOIQ  ABox assertions and TBox axioms). ABox assertions, GCIs and 

RIAs in SHOIQ are defined analogously to ALCH, but allowing for SHOIQ concepts and 

roles where applicable. In addition to GCIs and RIAs, SHOIQ TBox allow for transitivity 

axioms (TAs), which are expressions trans(P) where P is a role. 

Knowledge bases in SHOIQ are defined essentially as for ALCH, but must satisfy an 

additional constraint: the roles S that occur in the number restrictions ≥ � �. � ���  ≤

� �. � must be simple, which means that they can not be impliedby roles occurring in 

transitivity axioms. Intuitively, this allows us to count only the direct neighbors of a node, but 

not nodes that are further away inane interpretation. It is well known that dropping this 

restriction results in an undecidable logic. 

       To formalize the notion of simple roles, we use the relation ⊑�, which relates 

each pair of roles P1, P2 such that �1�   ⊆  �2�holds in every interpretation thatsatisfies T . 
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Definition 10 (simple roles, SHOIQ knowledge bases). For a TBox  T , we denote by⊑�the 

reflexive transitive closure of {(�1, �2)|�1 ⊑ �2 �����(�1) ⊑ ���(�2) is in T }; we 

usually write ⊑� in infix notation. A role S is simplew.r.t. T , if there is no P such that P ⊑�S 

and trans(P) ∈ T . 

  A knowledge base in SHOIQ is a pair � = ≺ �, � ≻consisting of an ABox A and a TBox T, 

such that all roles S occurring in a number restriction  ≥ ��. ��� ≤ ��. � are simple w.r.t. T. 

Example about TBox: 

 

��������������� ⊑ ∀������ℎ���. ���������  

���ℎ������ ⊑  ∃������ℎ���. {949352}  

������������������� ⊑  ∃����ℎ��. ������������������� 

 ������ � ⊑ ≥  1 ������ℎ��� ���������� ⊓ ≥  10 ℎ��������� ⊓ ≤  30 ℎ��������  

������ ⊑ ¬����������� 

����������� ≡  ����������� � ������� 

 ����������� ≡  ������� ⊓  ∃���������. {������������}  

���������� ≡  ����������� ⊓  ¬(������� � ���ℎ������������ )[31] 

 

Semantics of SHOIQ. To give semantics to SHOIQ knowledge bases, we need to define the 

semantics of the new concept and role constructors. 

 

Definition 11 (semantics of concepts and roles in SHOIQ). For every interpretation I, we 

define: 

(��)� =  {(�′, �) | (�, �′)  ∈  ��} 

{�}�  =  {��} 

(≥  � �. �) � =  {� | {�′ | (�, �′)  ∈  �� ∧  �′ ∈  ��}|  ≥  �} 

(≤  � �. �) � =  {� |{�′ | (�, �′)  ∈  �� ∧  �′ ∈  ��}|  ≤  �} 

 

    We also need to define the semantics of assertions and axioms, on which the semantics of 

knowledge bases depends. Sublogics of SHOIQ. There are many well known DLs that 

contain ALC, and extend it with some of the features of SHOIQ. The logic S is the extension 

of ALC with transitivity axioms. Both ALC and S can be extended with the additional 

features as follows: the presence of the letter H indicates that RIAs are allowed, and the 

additional letters I, O and Q respectively denote the presence of inverses as a role constructor, 
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of nominals, and of number restrictions. Some of these extensions, are listed in Table 2. The 

best known of them is SHIQ, which is closely related to the OWL-Lite standard. 

 

DL Tas RIAs Inverses nominals NRs 

ALC       

ALCI       

ALCHQ        

SH          

SHIQ          

SHIQ          

SHOI          

ALCHOIQ      

SHOIQ           

 

Table 2:Some expressive DLs between ALC and SHOIQ. 

5.4. The SR Family: 

      SROIQ is a rather well known extension of SHOIQ, which was proposed as the basis for 

the Web Ontology Language standard OWL 2 . Its sublogics SRIQ, SROQ and SROI are 

analogous to SHIQ, SHOQ and SHIO. 

The most prominent feature of the logics in the SR family are complex role inclusion axioms 

of the form P1 ° ∙∙∙∙∙ °� ⊂ �. It is also possible to explicitlystate certain properties of roles like 

transitivity, (ir)reflexivity and disjointness.Some of these additions increase the expressivity 

of the logic, while others are just ‘syntactic sugar’ and are intended to be useful for ontology 

engineering. Were call the definition of SROIQ from , borrowing some notation from .As 

usual, we start by defining concepts and roles. 

Definition 13 (SROIQ concepts and roles). In SROIQ, we assume that the signature contains 

a special role name U, called the universal role. Atomic concepts B, concepts C, atomic roles 

P, S, and roles R, obey the follow in grammar, where � ∈  ��, � ∈  ��, � ∈  ��: 

� ∷ =  � | {�} 

�, �1, �2 ∶: =  � | ¬� | �1 ⊓ �2 | �1 ⊔ �2 | ∀�. � | ∃�. � | ∀�. � | ∃�. � | ∀�. � | 

≥ ��. � |  ≤ ��. � | ∃�. ���� 

�, � ∷=  � | �� 

�, �1, �2 ∷=  � | �1 ∘ �2 

We denote by NR the set of all atomic roles {�, �� | � ∈ ��}. Non-atomic rolesof the form 

�1 ∘···∘ �� may be called role chains.Note that U may only occur in universal and existential 

restrictions. SROIQ supports some assertions and axioms that were not present in the other 
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logics so far. In particular, the rich role axioms are its main distinguishing feature. 

Definition 14 (SROIQ ABox  assertions, TBox axioms). In SROIQ, ABox assertions are as 

follows: 

– If C is a concept and � ∈ �� an individual, then C(a) is a concept membership assertion. 

– If P is an atomic role and �, � ∈ �� are individuals, then �(�, �) is a (positive) role 

membership assertion. 

– If S is an atomic role and �, � ∈ �� are individuals, then ¬�(�, �) is a (negative) role 

membership assertion. 

– If a, � ∈ �� are individuals, then � ≉ � is an inequality assertion. 

TBox axioms are GCIs, defined as usual, as well as: 

– If R is a role chain and P is an atomic role, then � ⊑ � is a complex role inclusion axiom 

(CRIA). 

 

    To define SROIQ knowledge bases, we need some additional conditions that were designed 

to ensure decidability. In particular, we need a notion called regularity and, similarly to 

SHOIQ, we must define simple roles, and restrict the roles occurring in certain positions to be 

simple. As for SHOIQ, we define a relation⊑�that contains the pairs R, P of roles such that 

�� ⊆ ��for each model I of T , but the definition is more involved due to the presence of role 

chains in the role inclusion axioms. 

6. Reasoning Services: 
 

   The basic reasoning services in DL systems is to test for the satisfiability of a concept or a 

TBox,  to test whether the information specified in it contains logical contradictions or not.  

In case the TBox contains a contradiction, any consequence can follow logically from the 

TBox. Moreover, if a TBox is not satisfiable, the specified information can hardly capture the 

intended meaning from an application domain. To test for satisfiability is often a first step for 

a user to check whether a TBox models something “meaningful”. 

 The concept description C is satisfiable iff it has a model,  iff there exists an interpretation� 

such that �(�) ≠ ∅. A TBox � is satisfiable iff it has a model,  an interpretation that satisfies 

all GCIs in � . 

 If a concept or a TBox is not satisfiable,  it is called  unsatisfiable. [19] 
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6.1.Reasoning services of TBox  Axiomes: 

 C, D  two concept descriptions and � is TBox. The concept description C is subsumed by the 

concept description D  w.r.t.  (� ⊑ �): 

                                                        iff �(�) ⊆ �(�) holds in every model� of � . 

 Two concepts C, D are equivalent w.r.t. T (� ≡ �): 

                                                        iff �(�) = �(�) holds for every model � of � .  

 

6.2.Reasoning services of ABox assertion: 

  We can test for the absence of contradictions in ABoxes. An ABox � is consistent w.r.t. a 

TBox� , iff it has a model that is also a model for  . The individual� is an instance of the 

concept description C w.r.t. an ABox  A we write �(�) : 

 iff �(�) ∈  �(�)for all models �of A.  

7. Reasoning Techniques: 
  There are three main reasoning approaches for the DLs that underlie OWL. For the 

expressive DLs, which offer all Boolean concept constructors, most reasoning services can be 

reduced to consistence of an ABox w.r.t. a TBox in polynomial time. In presence of full 

negation we can devise the following polynomial time reductions. 

 

• Equivalence can be  reduced to subsumption: C ≡ D iff C ⊑ D and D ⊑C.  

• Subsumption can be  reduced to (un)satisfiability: C ⊑ D iff C ⊓  ¬D is unsatisfiable  

   w.r.t. T . 

• Satisfiability can be  reduced to consistency: C is satisfiable w.r.t. T iff the ABox {C(a)} is  

consistent w.r.t. T .  

• The instance problem can be reduced to (in)consistency: � ∪ � ⊩  �(�) ��� � ∪  {¬�(�)} 

is    inconsistent w.r.t. T . [19] 
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8. FOL: 
 

  First-order logic (FOL) is  provides a way of representing information like the : Mary is a 

person. Whereas propositional logic assumes world contains facts, first-order logic (like 

natural language) assumes the world contains: Constants and Predicates as jhon is person and 

function as Italian(fatherOf (Mario)). 

    FOL is the basis of any query language for relational databases, to the best of our 

knowledge, the most expressive class of queries that go beyond instance checking, and for 

which decidability of query answering has been proved in DLs, is the class of union of 

conjunctive queries (UCQ) . This restriction on the query language may constitute a serious 

limitation to the adoption of DLs technology in information management tasks, such as those 

required in Semantic Web applications. 

8.1. The table for FOL: 

     Many description logics are decidable fragments of first-order logic (FOL�), also known 

as first-order predicate calculus (FOPC), and many of two-variable logic or guarded logic, 

however, some description logics have more features than first-order logic. 

 

FOL DL 
 

�(�, �)   �(�) 

�(�, �)  � 
�(⊥, �)  ⊥ 
�(¬� , �)  ¬�(�, �) 
�(� ⊓ � , �)  �(�, �)  ∧ �(�, �) 
�(� ⊔ � , �)  �(�, �)  ∨ �(� , �) 
�(∀�. �, �)   ∀� (�(�, �)   → �(�, �)) 
�(∃�. �, �) ∃��(�, �)  ∧ �(�, �) 

 

Table3:Translation between DL and FOL. 

 

   Despite of the feasibility of direct translation between FOL and DL, guaranteeing complete 

and terminating reasoning requires a different transformation, such as the structural 

transformation. The structural transformation is based on a conjunction normal form, which 

replaces FOL sub formulae with new predicates, for which it also provides definitions. A 

major advantage of the structural transformation is that it avoids the exponential size growth 

of the clauses. [20] 
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9. DL-Lite: 
 

      The DL-Lite family is testified by the fact that it forms the basis of OWL 2 QL, one of the 

three profiles of OWL. The OWL 2 profiles are fragments of the full OWL 2 language that 

have been designed and standardized for specific  application requirements. According to the 

official W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for 

applications that use very large amounts of data and where query answering is the most 

important reasoning task. 

 DL-Lite family of description logics was  proposed with the aim of capturing typical 

conceptual modeling formalisms, such as UML class diagrams and ER models ,while 

maintaining good computational properties of standard DL reasoning tasks . [21] 

10. DAML+OIL and Description Logics: 
 

DAML+OIL is  a language developed as part of the US DARPA Agent Markup Language 

(DAML) programme and OIL (the Ontology Inference Layer) , developed by a group of 

(mostly) European researchers. This language has a syntax based on RDF Schema (and thus is 

Web compatible), and it is based on common ontological primitives from Frame Languages 

(which supports human understandability). Its semantics can be defined via by a translation 

into the expressive DL SHIQ. 

DAML+OIL is designed to describe the structure of a domain; it takes an object oriented 

approach, describing the structure in terms of classes and properties. An ontology consists of 

a set of axioms that assert, e.g., subsumption relationships between classes or properties. 

Asserting that resources (pairs of resources) are instances of DAML+OIL classes (properties) is 

left to RDF, a task for which it is well suited. When a resource res is an instance of a class C 

we say that rec has type C. From a formal point of view, DAML+OIL can be seen to be 

equivalent to a very expressive description logic (DL), with a DAML+OIL ontology 

corresponding to a DL terminology (Tbox). As in a DL, DAML+OIL classes can be names 

(URIs) or expressions, and a variety of constructors are provided for building class 

expressions. The expressive power of the language is determined by the class (and property) 

constructors supported, and by the kinds of axiom supported. [22] 
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11. Conclusion: 
 

      The emphasis in DL research on a formal, logic-based semantics and a thorough 

investigation of the basic reasoning problems, together with the availability of highly 

optimized systems for very expressive DLs, makes this family of knowledge representation 

formalisms an ideal starting point for defining ontology languages for the Semantic Web. The 

reasoning services required to support the construction, integration, and evolution of high 

quality ontologies are provided by state-of-the-art DL systems for very expressive languages. 

 To be used in practice, these languages will, however, also need DL-based tools that further 

support knowledge acquisition (i.e., building ontologies), maintenance (i.e., evolution of 

ontologies), and integration and inter-operation of ontologies. First steps in this direction have 

already been taken. For example, OilEd  is a tool that supports the development of OIL and  

DAML+OIL ontologies, and ICom is a tool that supports the design and integration of entity-

relationship and UML diagrams. On a more fundamental level, so-called non-standard 

inferences that support building and maintaining knowledge bases (like computing least 

common subsumers, unification, and matching) are now an important topic of DL research . 

All these efforts aim at supporting users that are not DL-experts in building and maintaining 

DL knowledge bases. 
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1. Introduction: 

     Ontology-based data access (OBDA) is a recent paradigm for accessing and integrating 

data sources through an ontology that acts as a conceptual, integrated view of the data, and 

declarative mappings that connect the ontology to the data sources.[37] an ontology defines a 

high-level global schema of (already existing) data sources and provides a vocabulary for user 

queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the 

data sources and then delegates the actual query evaluation to a suitable query answering 

system such as a relational database management system. [23] 

     The first experiences in the application of the OBDA framework in real-world scenarios 

have shown that the semantic distance between the conceptual and the data layer is often very 

large, because data sources are mostly application-oriented: this makes the definition, 

debugging, and maintenance of mappings a hard and complex task. Such experiences have 

clearly shown the need of tools for supporting the management of mappings. [24] 

 

Figure 11:Ontology Based Data Access (OBDA). 

2. Ontology-based data access framework: 
        In last decade the terms related to Semantic Web become significant elements in the 

efficient way of information retrieval, processing and supporting availability of machine 

readable data. An ontology offers a wide spectrum of its application for data access. 

Ontology-Based Data Access is regarded as a key ingredient for the new generation of 

information systems, especially for Semantic Web applications that involve large amounts of 
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data. OBDA system uses an ontology as a conceptual schema of the subject domain, and as a 

basis of the user interface for SQL database systems. we will present  overview of OBDA 

[40]wich  has gained attention in recent years for providing access to large volumes of data by 

using ontologies as a conceptual layer and exploring their ability to describe domains and deal 

with data incompleteness. This is done through mappings that connect the data in the database 

to the vocabulary of the ontology. [25] 

3. Mapping  between the data and the ontology: 

    One important aspect in OBDA concerns the construction of a system specification, 

defining the ontology and the mappings over an existing set of data sources. Mappings are 

indeed the most complex part of an OBDA specification, since they have to capture the 

semantics of the data sources and express such semantics in terms of the ontology. More 

precisely, a mapping is a set of assertions, each one associating a query φ(x) over the source 

schema with a query ψ(x) over the ontology. The intuitive meaning of a mapping assertion is 

that all the tuples satisfying the query φ(x) also satisfy the query ψ(x). We write a mapping 

assertion as �(�) ↝ �(�).  

    As an example, consider ����(�, �, �)  ↝ ������(�), name(x, y), which maps the 

ontology predicates person and name to the database relation tabP, thus indicating how 

ontology instances can be constructed from the data retrieved at the sources. 

     In the following, we assume to have three pair wise disjoint, countably infinite alphabets: 

an alphabet�� of ontology predicates, an alphabet ��of source schema predicates, and an 

alphabet �� of constants. 

Data sources(S): A data source S consists of a data schema and a number of corresponding 

data instances. which are external and independent (possibly multiple and heterogeneous). A 

typical example for a data source is a relational or semi-structured database. 

    A source schema S is a relational schema containing relations in ΓS, possibly equipped 

with integrity constraints (ICs). A legal instance D for S is a database for S that satisfies the 

��s of S.  Const(D) are the set of constants occurring in D. Given a first-order sentence α, we 

write S |= α if for each database D legal for S, the interpretation � � ⊩  �, where � � is the 

interpretation induced by D. 
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We consider simple schemas, i.e., relational schemas without ���, and FD schemas, i.e., 

simple schemas with functional dependencies (FDs) . and by a CQ over a source schema S 

that mean a CQ over the alphabet of S. With �(~�) which denote a CQ with free variables 

~�. The number of variables in ~� is the arity of the query. A Boolean CQ is a CQ without 

free variables. Given a CQ q over S and a legal instance D for S, ����(�, �) denotes the 

evaluation of q over D. 

Ontology: In the context of OBDA, it is usual to consider the ontology to be a Description 

Logic (DL) ontology ( equivalently, an OWL ontology). A DL ontology consists of a finite 

set of axioms that are usually in the form of set inclusions between two (possibly complexly 

defined) concepts that represent classes of objects. The ontology captures general knowledge 

about the domain of interest, such as generalizations, relational links, etc.Ontology provides a 

unified, conceptual view of the managed information. 

      In particular, a DL ontology � is pair ℎ� , ��, where T is the TBox and A is the ABox. O, 

T.  we do not interpret ontologies under the Unique Name Assumption.  ���(�) are the set 

of models of O, and with � ⊩  � the fact that O entails a sentence α. Also, by ontology 

inconsistency we mean the task of deciding whether Mod(O) = ∅, and by instance checking 

the task of deciding whether � ⊩  �, where β is a ground atom. By CQs over O we mean 

CQs over the alphabet of the TBox of O, and by CQ entailment the task of checking whether 

� ⊩  �, where q is a Boolean CQ.  we consider DLs that are the logical basis of the W3C 

standard OWL and of its profiles,  SROIQ , which underpins OWL, DL-LiteR , which is the 

basis of OWL 2 QL, RL . 

    Mappings : Mappings associate data from the data sources with concepts in the ontology. 

A mapping m has the form: 

� ∶  �(�) ⇝ � (�) 

    �(�): is a query over the data sources. called the body of m.� (�) is an element of the 

ontological vocabulary. called the head of m. The number of variables in  x is the arity of the 

mapping assertion. Given a mapping assertion m, we also use FR(m) do denote the frontier 

variables x, head(m) to denote the query ψ(x), and body(m) to denote the query φ(x). We also 

remark that queries used in our mappings, besides variables, may contain constants from ��. 

A mapping M from S to T is a finite set of mapping assertions from S to Thereinafter M will 

always denote a mapping. In principle, φ(x) and ψ(x) can be specified in generic query 
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languages. The literature on data integration and OBDA has mainly considered φ(x) 

expressed in first-order logic (FOL), and ψ(x) expressed as a CQ.[26] 

4. Query rewriting: 

       Query rewriting is an important technique for answering queries over data described 

using ontologies. In query rewriting the input, a conjunctive query (CQ) q and an ontology O, 

is transformed into a new data-log query that captures all answers 

of q over O and any dataset D. This process can be time-consuming as it is of high 

computational complexity. In many real-world applications, this can be particularly 

problematic as they involve frequent and relatively small modifications on quite large 

ontologies. Hence, a drawback of most of modern query rewriting systems is that every time 

the initial ontology is modified, e.g. when new axioms are added or existing ones removed, 

they compute a new rewriting from scratch. In this paper, we study the problem of computing 

a rewriting for a CQ over an ontology that has been modified. We do this by reusing the 

information obtained by the extraction of some previous rewriting with the goal of performing 

the least possible computations. We study the problem theoretically, present detailed 

algorithms for both ontology revision and ontology contraction and finally, present an 

extensive experimental evaluation using the well-known query rewriting systems Requiem. 

[27] 

4.1. Query Rewriting Algorithms: 

     In this section we describe the query rewriting algorithms, We use the well-known notions 

of constants, variables, function symbols, terms, and atoms of first-order logic. A Horn clause 

C is an expression of the form � � ←  ��  ∧ . . .∧ ��, where each ��is an atom. The atom �� is 

called the head, and the set {��, . . . , ��} is called the body. We require that all the variables 

occurring in the head of C occur at least in one ofits body atoms. For instance, the expression 

teaches(�, �(�))  ←  ���������(�) is a Horn clause.  

    A conjunctive query (CQ) Q posed over an ontology O is a Horn clause whose head 

predicate does not occur in O, and whose body predicates are class and property names 

occurring in O. A union of conjunctive queries (UCQ) over O is a set of conjunctive queries 

over O with the same head up to variable renaming . A tuple of constants � is a certain answer 

to a UCQ Q over O and a set of instance data � ��� � ∪  � ∪  � ⊨  �� (�),where � �is the 

head predicate of Q, and Q is considered to be a set of universally quantified implications 
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with the usual first-order semantics. The set of all answers to Q over O and A is denoted by 

���(�, � ∪  �). Given a conjunctive query Q and an ontology O, a query ��is said to be a 

rewriting of Q w.r.t. O if ���(�, � ∪  �)  =  ���(�� , �) for every A. Both algorithms 

compute the rewriting �� of a given query Q w.r.t. a DL-LiteR ontology O. DL-LiteR is the 

basis for OWL 2 QL. [28] 

4.1.1. The algorithm 1: 

 

      The algorithm computes ��by using the axioms of O as rewrite rules and applying them 

to the body atoms of Q. The algorithm is shown in Algorithm 1. The partial function ref takes 

as input an axiom αand an atom D, and returns an atom ref(D; α) as follows. 

��� =  �(�)�ℎ����ℎ����ℎ��  (�) ��� =  � ⊑ �, �ℎ�����(�;  �)  =  �(�); 

(��)��� =  ∃� ⊑ �, �ℎ�����(�;  �)  =  � (� ; − );  ���(���)��� = ∃�� ⊑ �, �ℎ�� 

���(�;  �)  =  � (− ;  �). 

��� =  � (�; − ), �ℎ����ℎ����ℎ�� (�) ��� =  � ⊑ ∃� , �ℎ�����(�;  �)  =  �(�); 

(��) ��� =  ∃� ⊑ ∃� , �ℎ�����(�;  �)  =  �(�; );  ��� (���) ��� =  ∃�� ⊑ ∃� , 

�ℎ�����(�;  �)  =  �(−;  �). 

��� =  � (− ;  �), �ℎ����ℎ����ℎ�� (�) ��� =  � ⊑ ∃��, �ℎ�����(�;  �)  =  �(�); 

(��) ��� =  ∃� ⊑ ∃��, �ℎ�����(� ;  �)  =  �(�; − );  ��� (���) ��� =  ∃�−⊑ ∃�� , 

�ℎ�����(�;  �)  =  �( −;  �). 

��� =  � (�;  �), �ℎ����ℎ����ℎ�� (�) �����ℎ��� =  � ⊑ ���� =  ����� , 

�ℎ�����(�;  �)  =  �(�;  �);  ��� (��) �����ℎ��� =  ��� − ��� =  � − �� , �ℎ�� 

���(�;  �)  =  �(�;  �).[29] 

4.1.2.The algorithm 2: 

 

     This algorithm is based on query rewriting every time the initial ontology is modified 

when new axioms are added By usingConjunctive query : 

�����: Conjunctive query �, DL − Lite�ontology � 

��  =  {�}; 

repeat 

  foreach query �′ ∈ ��do 

    (reformulation) foreach atom D in Q’do 

       foreach axiom � ∈ �do 

          if α is applicable to D then 
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��  =  �� ∪ {�′[�/���(�;  �)]}; 

             end 

        end 

     end 

      (reduction) forall atoms ��; ��in Q’ do 

         if D1 and D2 unify then 

σ= MGU(��; ��); 

�� =  �� ∪ {�(�′�)}; 

 

         end 

     end 

   end 

until no query unique up to variable renaming can be added to ��; 

return ��; [30] 

Example:  
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For DL-Lite, result is a union of conjunctive queries : 

 

Mapping: 

    Data can be stored/left in RDBMS  

 Relationship between ontology and DB defined by mappings, e.g.: 

 

UCQ translated into SQL query: 

 

 

 

4.1.3. Most General Unifier: 

     A substitution,  is a most general unifier (mgu) of a set of expressions  if it unifies

, and for any unifier,  of , there is a unifier,  such that . 

     The idea is that  is less specific than (technically, no more specific than) , that is, we 

can substitute for some of the variables of  and get . Note that there can be more than one 

most general unifier, but such substitutions are the same except for variable renaming. 

    In the above example, �2  is the mgu of the set of expressions. We can see that :  � = �� ∘

[�/�]There is a simple algorithm for finding the most general unifier of a set of expressions. 

First, we need to define the disagreement set of a set of expressions. This is found by 

(textually) finding the first symbol starting from the left that is not the same in every 

expression and extracting the sub expressions that begin with that symbol at that position in 

each expression of the set. The resulting set of sub expressions is the disagreement set. For 

example, the disagreement set ��� {�(�, �, �), �(�, �(�), �), �(�, �(�), �)�� {, �(�)}  . 
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     If ref(D; α) is defined for αand D, we say that αis applicable to D. The expression 

�[�/�′] denotes the CQ obtained from Q by replacing the body atom D with a new atom �′ 

The function MGU takes as input two atoms and returns their most general unifier. The 

function λtakes as input a CQ Q and returnsa new CQ obtained by replacing each variable that 

occurs only once in Q withthe symbol " − ". 

 

    Starting with the original query Q, Algorithm continues to produce queries until no new 

queries can be produced. In the reformulation step the algorithm rewrites the body atoms of a 

given query �′by using applicable ontology axiomsas rewriting rules, generating a new query 

for every atom reformulation. Then,in the reduction step the algorithm produces a new query 

�(�′�) for each pairof body atoms of �′that unify. [31] 

5.Query answering: 

       Ontological databases extend traditional databases with ontological constraints. This 

technology is crucial for many applications such as semantic data publishing and integration 

as well as model-driven database design. For many classes of ontological constraints, query 

answering can be solved via query rewriting. In particular, given a conjunctive query and a set 

of ontological constraints, the query is compiled into a first-order query, called the perfect 

rewriting, that encodes the intentional knowledge implied by the constraints. Then, for every 

database D, the answer is obtained by directly evaluating the perfect rewriting over D. Since 

first-order queries can be easily translated into SQL. 

6.Conception: 

     We use the conception for presenting application diagrams which illustrate the relationship 

between application classes  

6.1. Class diagram in the Unified Modeling Language (UML): 

     Class diagram  is a type of static structure diagram that describes the structure of a system 

by showing the system's classes, their attributes, operations (or methods), and the 

relationships among objects.[33] 

      The class diagram is the main building block of object-oriented modeling. It is used for 

general conceptual modeling of the systematic of the application, and for detailed modeling 

translating the models into programming code. Class diagrams can also be used for data 



 

43 

modeling. The classes in a class diagram represent both the main elements, interactions in the 

application, and the classes to be programmed. 

In the diagram, classes are represented with boxes that contain three compartments: 

 The top compartment contains the name of the class. 

 The middle compartment contains the attributes of the class. 

 The bottom compartment contains the operations the class can execute.[35] 

6.2.Class diagram for application: 

  On this page I used the class diagram to illustrate the work of application classes and the 

relationship between classes: 

 

Figure 12: Class diagram for  OBDA application. 

7.Use case for application: 
 

   In the Unified Modeling Language (UML), a use case diagram can summarize the details of 

your system's users (also known as actors) and their interactions with the system. To build 

one, you'll use a set of specialized symbols and connectors and represent: 
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 Scenarios in which your system or application interacts with people, organizations, or 

external systems. 

 Goals that your system or application helps those entities (known as actors) achieve. 

 The scope of your system.[37] 

7.1.Use case diagram components: 

To answer the question, "What is a use case diagram?" you need to first understand its 

building blocks. Common components include: 

• Actors: The users that interact with a system. An actor can be a person, an 

organization, or an outside system that interacts with your application or system. They 

must be external objects that produce or consume data. 

• System: A specific sequence of actions and interactions between actors and the 

system. A system may also be referred to as a scenario. 

• Goals: The end result of most use cases. A successful diagram should describe the 

activities and variants used to reach the goal.[38] 

7.2.Use case for application: 

 



 

45 

Figure13: Use case for OBDA application. 

8.Diagrame sequence: 
 

  Sequence diagram: an “interaction diagram” that models a single scenario executing in a 

system 

• 2nd most used UML diagram (behind class diagram) 

• Shows what messages are sent and when[38] 

8.1.Diagrame sequence for application: 

 

Figure14:Diagrame sequence for OBDA application.(Rewriter) 
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Figure15: Diagram sequence for OBDA application.(RModel) 

9. Example about University diagram class: 
This application can be implemented on any of the Ontology we want, where I took an 

example about the university wish applied about it ontology, where from the classes of this 

university  the person ,student ,professor, university....., where applied about it  Logic 

description, which facilitated the establishment of Diagram Class in order to clarify the 

relationship between these categories. 

9.1.logic description for University: 

������ ⊑ ∃������������. ������������  

������������ ⊑ ∃������������������������. ������������  

������������ ⊑ ∃������������������������. ������������  

���������� ⊑ ∃����������. ������ 

���������� ⊑ ∃ℎ���������. ������ 

���������� ⊑ ∃������������������. ������ 

∃������������������ ⊑ ∃���������� 

���������� ⊑ ∃ℎ������������. ������� 



 

47 
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������� ⊑ ������������ 

�������ℎ��������� ⊑ ������� 

������� ⊑ ������ ⊓ ∃�����������. ������ 
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9.2.Class diagram for university: 

 

Figure16:Class diagram for university applied in the OBDA application. 

10.Development environment: 
Eclipse is an integrated development environment (IDE) used in computer programming, and 

is the most widely used Java IDE. It contains a base workspace and an extensible plug-

in system for customizing the environment. Eclipse is written mostly in Java and its primary 

use is for developing Java applications, but it may also be used to develop applications in 

other programming languages via  plug-in system for customizing the environment. Eclipse is 
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written mostly in Java and its primary use is for developing Java applications, but it may also 

be used to develop applications in other programming languages via plug-ins,  

including Ada, ABAP, C, C++, C#, COBOL, D, Fortran, Haskell, JavaScript, Julia, Lasso, Lu

a,NATURAL, Perl, PHP, Prolog, Python, R, Ruby (including Ruby on Rails, Scala, 

 Clojure, Groovy, Scheme, and Erlang. It can also be used to develop documents 

with LaTeX (via a TeXlipse plug-in) and packages for the software Mathematical. 

Development environments include the Eclipse Java development tools (JDT) for Java and 

Scala, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among others.[39] 

11. Implementation: 
 

The application procedure has been explained . The developed application was performed in  

order to expand the process of  connecting to the database .it rewrites an ontology query then 

it convert it into SQL ,the latter is connected to the database to answer the query by pressing 

au the button answer . 

 

Figure17:OBDA application before rewriting and answering query. 
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Figure18: OBDA application after rewriting and answering query. 

12. Conclusion: 
 

In this chapter, OBDA is defined .It uses the system of ontology as conceptual  Diagram of 

the user interface of the database system SQL . 

We talked about Query  rewriting and the Algorithm that has been used to wake the query 

rewriting process easy as well as the answer query which comes after converting every 

rewriting query to SQL. 
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     GENERAL CONCLUSION 

 The Ontology-Based Data Access (OBDA) paradigm consists in exposing, for the purpose of 

querying, a conceptual view of the domain of interest, given in the form of an ontology that 

hides the structure of the data sources. Queries can then be posed over this high-level 

conceptual view, and end users no longer need an understanding of the data sources, the 

relation between them, or the encoding of the data. User queries are translated by the OBDA 

system into queries over one or multiple data sources The framework of OBDA has received 

a lot of attention in the last years: many theoretical studies have paved the way for the 

construction of OBDA systems  and the development of OBDA projects for enterprise data 

management in various domains . The formalism of choice for representing ontologies in 

OBDA is the description logic DL-LiteR , which underpins OWL 2 QL . DL-LiteR was 

designed to ensure that queries against the ontology are first order rewritable; that is, they can 

be reformulated as a set of relational queries over the sources. 

The purpose of this topic that SQL is giving the data exist only  in the  database   reverse 

OBDA, which increases the aspects of semantic existing tic. When the query is entered and 

the ontology ,the OBDA system rewrites this query and ontology  into  many of the new 

query. where each query transforms into SQL , that we can extract data  indirect relationships. 

Improvements that need to be made are: 

- Automatically convert from database to ontology. 

- Create an automatic mapping that converts each query to SQL. 

- Give An automatic procedure that converts a query from a natural language into an language 

formal where the user only shows the natural language and the result    
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 ملخص :

( جزءًا أساسياً من الويب الدلالي. في هذا OBDA) الانتولوجييعد نهج الوصول إلى قاعدة البيانات العلائقية المستندة إلى         

. تتم كتابة هذا الاستعلام في مجموعة من الاستعلامات. يتم الرد على TBoxالأسلوب ، يحدد المستخدم استعلامًا ، مستخدمًا 

بواسطة قاعدة بيانات علائقية  ABox. في حالتنا ، يتم تمثيل ontology ABoxالاستعلامات التي تمت إعادة كتابتها باستخدام 

 وقاعدة البيانات المقترحة. الأنتولوجي ( بينmappingوعملية ربط)

هو استعلام قاعدة بيانات يجب أن تعود ليس فقط على البيانات التي يتم تخزينها في قاعدة البيانات بشكل واضح،  OBDAميزة         

من قبل عملية اعادة  (ontological informationالانتولوجي)ولكن أيضا الحقائق الإضافية التي يمكن استنتاجها من المعلومات 

 .الاستعلامات الكتابة

التي تقوم   D. Calvanese في هذا العمل نستخدم الخوارزمية الاستعلام  العديد من الخوارزميات لحل مشاكل إعادة كتابةهناك        

. نناقش أيضًا اللغات الفرعية للغة الأنطولوجية على الإنترنت DL(. لهذا السبب ، نستكشف عائلات مختلفة من هذه DLعلى )

(OWL.وشرح علاقتها بمشكلتنا ) 

 :المفتاحية  اتالكلم

OWL، OBDA ، DL ، البيانات قواعد 

Abstract:  

Ontology based relational data bases access approach (OBDA) is a crucial main of semantic 

web. In that approach, the user specifies a query, using the TBox of the ontology.  This query is 

rewritten into a set of queries. The rewritten queries are answered using the ABox of the ontology 

only. In our case the ABox is represented by a relational data base and a mapping process between the 

ontology and a data base is proposed. 

The advantage of the OBDA is that a database query then should return not only the data that 

is stored explicitly in the database, but also additional facts that can be inferred from it using the 

ontological information by rewriting process. 

There are many algorithms for rewriting problem, in this work we use the algorithm of D. 

Calvanese which is based on description logics (DL). For this reason, we explore different family of 

such DL. We discuss also, sublanguages of ontology web languages (OWL) and explain their 

relationship with our problem. 

Key words: 

Ontology, OWL, OBDA, DL, data bases. 

Résumé : 

           L'approche d'accès aux bases de données relationnelles basées sur l'ontologie (OBDA) est un 

élément essentiel du web sémantique. Dans cette approche, l'utilisateur spécifie une requête, en 

utilisant le TBox de l'ontologie. Cette requête est réécrite dans un ensemble de requêtes. Les requêtes 

réécrites sont répondues en utilisant l'ABox de l'ontologie seulement. Dans notre cas, l'ABox est 

représenté par une base de données relationnelle et un processus de mappage entre l'ontologie et une 

base de données est proposé. 

            L'avantage de l'OBDA est qu'une requête de base de données doit retourner non seulement les 

données qui sont stockées explicitement dans la base de données, mais aussi des faits supplémentaires 

qui peuvent être déduits à partir de l'information ontologique par le processus de réécriture. 

            Il existe de nombreux algorithmes pour résoudre les problèmes de réécriture, dans ce travail 

nous utilisons l'algorithme de D. Calvanese qui est basé sur des logiques de description (DL). Pour 

cette raison, nous explorons différentes familles de ces DL. Nous discutons aussi, des sous-langages 

des langages web d'ontologie (OWL) et expliquons leur relation avec notre problème. 

Mots clés: 

Ontologie, OWL, OBDA, DL, bases de données. 
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