Caractérisation numérique du champ magnétique généré par des systèmes électrotechniques

Proposé et encadré par :
Mr. CHOUCHOU Abdelmadjid.

Présenté par :
LOUBAZID Youcef.

Année Universitaire : 2013/2014

N° d’ordre : ISE-112
REMERCIEMENT ET DÉDICACES

Remerciements

Ce mémoire de Master est le résultat d’un travail de recherche de deux ans.

Mes remerciements vont tout premièrement, à Dieu le tout puissant qui m’a donné la foi, le courage et la patience de parvenir à finir ce modeste travail.

En préambule, je souhaite adresser tous mes remerciements au monsieur CHOUCHOU Abd Elmadjid enseignant à l’Université de M’sila pour avoir d’abord proposé ce thème. Que toute ma gratitude lui soit exprimée pour m’avoir encadré et encouragé tout au long de ces travaux de mémoire ainsi que pour toute la documentation qu’il a mis à ma disposition.

Sa grand expérience scientifique et à ses qualités humaines s’ajoute une capacité de prospection magique.

Je remercie tous les membres du jury qui acceptent de juger mon travail et pour l’intérêt qu’ils l’ont porté.

J’adresse mes vifs remerciements à mes enseignants de l’université de M’sila sans exception.

J’exprime ma profonde reconnaissance à mes parents, mes frères et mes sœurs pour leurs encouragements qui m’ont permis de finaliser ce travail.

Dédicaces

Je dédie ce mémoire :

✓ À la lumière de ma vie, ma très chère mère.
✓ À mon cher père.
✓ À mes frères et sœurs et leurs conjoints.
✓ À tous les enfants des frères et sœurs
✓ À tout ma famille.
✓ À tous mes amis.
SOMMAIRE

Sommaire

REMERCIEMENTS .. 1
DEDICACES ... 1
LA TABLE DE NOMENCLATURE ... 1
PREAMBULE .. 1
INTRODUCTION GENERALE ... 2
STRUCTURE DU MEMOIRE ... 4
I. ETAT DE L’ART SUR LE CHAMP MAGNETIQUE, COMPATIBILITE ELECTROMAGNETIQUE(CEM) ET CND. .. 5
 I.1. INTRODUCTION .. 6
 I.2. NOTION DU CHAMP .. 6
 I.3. CLASSIFICATION DU CHAMP .. 6
 I.3.1. Champ électrique .. 6
 I.3.2. Champ magnétique .. 7
 I.4. LE SPECTRE ELECTROMAGNETIQUE ... 7
 I.5. LES SOURCES ARTIFICIELLES ... 8
 I.6. DOMAINE D’UTILISATION .. 8
 I.7. LA COMPATIBILITE ELECTROMAGNETIQUE (CEM) .. 9
 I.8. LES NORMES CEM .. 9
 I.9. L’ENVIRONNEMENT ELECTROMAGNETIQUE .. 10
 I.10. FLUX DE FUITE MAGNETIQUE (MAGNETIC FLUX LEAKAGE) ... 11
 I.11. DIAGNOSTIC DES MACHINES TOURNANTES PAR L’ANALYSE DU CHAMP MAGNETIQUE DE FUITES .. 13
 I.12. CONCLUSION .. 15
II. ETUDE ANALYTIQUE DES CHAMPS DE FUITE S .. 16
 II.1. INTRODUCTION .. 17
 II.2. BOBINE A NOYAU DE FER .. 18
 II.2.1. Vecteur champ et vecteur induction magnétique ... 18
 II.2.2. Bobine parfaite .. 19
 II.2.3. Bobine réelle .. 21
 II.3. TRANSFORMATEUR CUIRASSE .. 22
 II.3.1. Représentation en terme de circuit électrique .. 23
 II.4. MACHINES ELECTRIQUES .. 30
 II.4.1. Sources de fuites ... 30
 II.4.2. Multipôles .. 31
 II.5. CONCLUSION .. 32
III. METHODES NUMERIQUES .. 33
 III.1. INTRODUCTION .. 34
 III.2. EQUATIONS DE MAXWELL ... 34
 III.2.1. Loi de Maxwell Gauss (électrique) .. 34
 III.2.2. Loi de Maxwell Faraday (induction) .. 34
 III.2.3. Loi de conservation de flux ... 34
 III.2.4. Loi de Maxwell Ampère ... 34
 III.3. LA LOI D’OHM .. 35
 III.3.1. Relations de passage ... 35
TABLE DES FIGURES

Table des figures

FIGURE I.1 SYSTEMES COUPLABLES ET VICTIMES ... 10
FIGURE I.2 PRINCipe DU CONTROLE PAR FLUX DE FUITE MAGNETIQUE 12
TABLEAU I.2 LES PROCedES De CONTROLE NON DESTRUCTIF : CARACTERISTIQUES 13
FIGURE II.1 CLASSIFICATION DES DISPOSITIFS ELECTRIQUES BASSE FREQUENCE 17
FIGURE II.2 COURBE D’AIMANTATION .. 19
FIGURE II.3 BOBINE REELLE ... 20
FIGURE II.4 BOBINE D’INDUCTION EN COUPE .. 22
FIGURE II.5. LES LIGNES DE FUITE D’UNE BOBINE A NOYAU DE FER 22
FIGURE II.6 TRANSFORMATEUR TYPE CUIRASSE .. 23
FIGURE II.7 .. 24
FIGURE II.8 .. 24
FIGURE II.9 .. 25
FIGURE II.10 ... 27
FIGURE II.11 .. 27
FIGURE II.12 CIRCUIT EQUIVALENT DE REFERENCE ... 28
FIGURE II.13 FUITEs D’ENCOCHES ... 31
FIGURE II.14 FUITEs D’EXTREMITES .. 31
FIGURE II.15 FUITEs DU CIRCUIT MAGNETIQUE ... 31
FIGURE III.1 INTERFACE ENTRE DEUX MILIEUX ... 35
FIGURE III. 2 ELEMENTS CLASSIQUES EN UNE ET DEUX DIMENSIONS 42
FIGURE III. 3 ELEMENTS DE REFERENCE TRIANGULAIRE LINEAIRE. 42
FIGURE III. 4 LES ELEMENTS DE BASES .. 43
FIGURE III. 3–TRINGLE DE PASCAL ... 43
FIGURE III. 5 ORGANIGRAMME DE CALCUL PAR ELEMENTS FINIS. 45
FIGURE IV.1 LOGICIEL COMSOL MULTIPHYSICS .. 47
FIGURE IV.2 SCHEMA SIMPLIFIER POUR LA DIRECTION DU CALCUL 49
FIGURE IV.3 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR LE CIRCUIT MAGNETIQUE SANS ENTREFER 50
FIGURE IV.4 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ... 50
UN ENTREFER DE 1MM .. 50
FIGURE IV.5 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ... 50
UN ENTREFER DE 2MM .. 50
TABLE DES FIGURES

FIGURE IV.6 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..51
UN ENTREFER DE 4MM ..51
FIGURE IV.7 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..51
UN ENTREFER DE 6MM ..51
FIGURE IV.8 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..51
UN ENTREFER DE 8MM ..51
FIGURE IV.9 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..52
UN ENTREFER DE 10MM ...52
FIGURES IV.10 INDUCTION GENEREE LE LONG DE LA DIRECTION X ..53
FIGURES IV.11 INDUCTION GENEREE LE LONG DE LA DIRECTION Y ..54
FIGURES IV.12. INDUCTION GENEREE EN FONCTION DE LA DISTANCE POUR DIFFERENTES EPAISSEUR D'ENTREFER ...55
TABLEAU IV.1 L’INDUCTION CALCULEE A L’INTERIEUR DE L’ENTREFER ...55
FIGURE IV.13 SCHEMA SIMPLIFIER POUR LA DIRECTION DU CALCULE ..56
FIGURE IV.14 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..57
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=100$...57
FIGURE IV.15 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..57
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=200$...57
FIGURE IV.16 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..57
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=400$...57
FIGURE IV.17 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..58
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=1000$...58
FIGURE IV.18 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..58
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=2000$...58
FIGURE IV.19 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..58
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=4000$...58
FIGURE IV.20 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L'INDUCTION MAGNETIQUE A DROITE POUR ..59
UNE PERMEABILITE DE LA CHARGE $\mu_{CH}=10000$...59
TABLE DES FIGURES

FIGURES IV.21 INDUCTION GENEREE LE LONG DE LA DIRECTION X ..60
FIGURES IV.22 INDUCTION GENEREE LE LONG DE LA DIRECTION Y ..61
FIGURES IV.23 INDUCTION MAGNETIQUE POUR DIFFERENTES VALEURS DE LA PERMEABILITE ..61
FIGURE IV.24 SCHEMA SIMPLIFIER POUR LA DIRECTION DU CALCULE62
FIGURE IV.25 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ..63
UNE TENSION DE 0.5 KV ..63
FIGURE IV.26 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ..63
UNE TENSION DE 1 KV ..63
FIGURE IV.27 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ..63
UNE TENSION DE 2 KV ..63
FIGURE IV.28 REPARTITION DES CHAMPS MAGNETIQUES A GAUCHE ET L’INDUCTION MAGNETIQUE A DROITE POUR ..64
UNE TENSION DE 3 KV ..64
FIGURES IV.29 INDUCTION GENEREE LE LONG DE LA DIRECTION X ..65
FIGURES IV.30 INDUCTION GENEREE LE LONG DE LA DIRECTION Y ..65
FIGURES IV.31 VARIATION DE L’INDUCTION EN FONCTION DE LA DISTANCE POUR DIFFERENTES VALEURS DE LA TENSION ...65
FIGURE A.1. LES DIMENSIONS DE LA BOBINE A NOYAU DE FER ..57
FIGURE A.2. LES DIMENSIONS DE LA BOBINE A NOYAU DE FER ..57
FIGURE A.3. LES DIMENSIONS DU TRANSFORMATEUR CUIRASSE58
LISTE DES TABLEAUX

Liste des tableaux

LA TABLE DE NOMENCLATURE .. 1
TABLEAU I.1 EXEMPLE DE VALEURS DU CHAMP MAGNETIQUE MESUREES A
PROXIMITE D’APPAREILS ELECTROMENAGERS [14]. .. 8
TABLEAU I.2 LES PROCEDES DE CONTROLE NON DESTRUCTIF : CARACTERISTIQUES .13
TABLEAU IV.1 L’INDUCTION CALCULEE A L’INTERIEUR DE L’ENTREFER . 55
LA TABLE DE NOMENCLATURE

La table de nomenclature

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification et l'unité</th>
<th>Symbole</th>
<th>Signification et l'unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM</td>
<td>Compatibilité électromagnétique</td>
<td>i</td>
<td>Le courant [A]</td>
</tr>
<tr>
<td>CND</td>
<td>Contrôle non destructif</td>
<td>r</td>
<td>La résistance [Ω]</td>
</tr>
<tr>
<td>MFL</td>
<td>Contrôle à flux de fuite</td>
<td>j</td>
<td>La densité du courant</td>
</tr>
<tr>
<td>\vec{B}</td>
<td>L’induction magnétique [T]</td>
<td>e_t</td>
<td>Force électromotrice l’ensemble du bobinage</td>
</tr>
<tr>
<td>\vec{B}_0</td>
<td>L’induction magnétique dans le vide</td>
<td>e_a</td>
<td>Force électromotrice</td>
</tr>
<tr>
<td>\vec{H}</td>
<td>Champ magnétique [A/m]</td>
<td>\vec{U}</td>
<td>La tension complexe [V]</td>
</tr>
<tr>
<td>μ</td>
<td>Perméabilité du milieu</td>
<td>\vec{I}</td>
<td>Le courant complexe [A]</td>
</tr>
<tr>
<td>μ_0</td>
<td>Perméabilité de vide [H.m$^{-1}$]</td>
<td>\vec{B}</td>
<td>Induction électrique [C/m2]</td>
</tr>
<tr>
<td>μ_r</td>
<td>perméabilité relative du milieu</td>
<td>dl</td>
<td>Elément de longueur [m]</td>
</tr>
<tr>
<td>ϕ_t</td>
<td>Flux magnétique [Wb]</td>
<td>ds</td>
<td>Elément de surface [m2]</td>
</tr>
<tr>
<td>ϕ_f</td>
<td>Flux de fuites [Wb]</td>
<td>dv</td>
<td>Elément de volume [m3]</td>
</tr>
<tr>
<td>L</td>
<td>L’inductance propre [H]</td>
<td>\vec{J}_c</td>
<td>Densité de courant de conduction [A/m2].</td>
</tr>
<tr>
<td>L_p</td>
<td>L’inductance principale</td>
<td>ρ</td>
<td>Densité de charge volumique [C/m3].</td>
</tr>
<tr>
<td>L_f</td>
<td>L’inductance de fuites</td>
<td>Q_i</td>
<td>charge contenue dans le volume [C]</td>
</tr>
<tr>
<td>ϕ_t</td>
<td>Flux totale [Wb]</td>
<td>ϵ</td>
<td>Permittivité électrique absolue [F/m].</td>
</tr>
<tr>
<td>U</td>
<td>La tension [V]</td>
<td>\vec{B}_r</td>
<td>L’induction rémanente [T]</td>
</tr>
<tr>
<td>U_{max}</td>
<td>La tension maximale [V]</td>
<td>\vec{J}_s</td>
<td>Densité de source [A/m2]</td>
</tr>
<tr>
<td>ω</td>
<td>Pulsation</td>
<td>\vec{E}</td>
<td>Champ électrique [V]</td>
</tr>
<tr>
<td>t</td>
<td>Temps [s]</td>
<td>\vec{K}_s</td>
<td>Courants surfaciques</td>
</tr>
<tr>
<td>ψ</td>
<td>Le flux encerclés par l’enroulement du transformateur</td>
<td>M</td>
<td>L’inductance mutuelle</td>
</tr>
<tr>
<td>ℓ</td>
<td>L’inductances de fuite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Préambule

Les progrès scientifiques dans le domaine de l'électrotechnique ont été considérables durant ce siècle, aussi bien au niveau de machines électriques, nous avons évolué à partir des machines à courant continu vers les machines à courant alternatif : les machines synchrones et asynchrones, ce développement est aussi considérable au niveau des transformateurs et des matériaux pour aimants, ces progrès sont en partie dus à l'essor considérable qu'a connu l'électronique de puissance. Plus les équipements électriques deviennent perfectionnés, plus les exigences en matière de sécurité, de précision et de perfectionnement deviennent fortes. C'est pourquoi, aujourd'hui, émergent des interrogations à propos des champs générés par ces dispositifs sur les autres éléments situés au voisinage immédiat de ces dispositifs, c'est autour de ce thème que gravite cette étude.

Le travail demandé dans le cadre de ce thème concerne l'étude du champ généré par les dispositifs électrotechniques basses fréquences les plus utilisés dans le domaine de l'énergie électrique, ce champ est généralement dû aux fuites électromagnétiques extérieures appelés sources de champs. On se limite à l'étude des dispositifs les plus utilisés comme les bobines à noyau de fer, les transformateurs et les machines tournantes.
INTRODUCTION GENERALE

Introduction générale

Les champs électriques et magnétiques (CE&M) d’extrêmement basse fréquence se situent entre 1 Hz et 300 Hz et font partie intégrante du spectre électromagnétique.

Il n’existe pas de source naturelle de ce type de champ. Les sources les plus communément rencontrées dans la vie quotidienne et dans les applications industrielles sont celles liées à la production, au transport et à l’utilisation de l’électricité (50 Hz en Europe et en Algérie, 60 Hz en Amérique du Nord et une partie au Japon). C’est les dispositifs électrotechniques basse fréquence qui font l’objet de cette étude [1].

Une des découvertes qui ont marqué le commencement de la physique moderne est la notion de champ.

Au début de la physique, on croyait que les propriétés de la matière étaient associées à des objets. Parmi les nombreuses conjectures faites pour tenter d'expliquer le mouvement des planètes, on supposa par exemple que celles-ci étaient fixées à des sphères invisibles, et que le mouvement de ces sphères entraînait celui des planètes qui y étaient attachées (une conception très en vogue du moyen-âge et au début de la renaissance). Ce genre de mécanisme devenait de plus en plus complexe au fur et à mesure que l'on accumulait des informations nouvelles sur les planètes et leur mouvement, au point que cela devient inextricable.

Une véritable révolution conceptuelle se fit lorsque l'on comprit que certaines caractéristiques de la nature n'étaient pas attachées aux objets matériels mais étaient définies en tout point de l'espace. Cette révolution se fit d'ailleurs assez tard, bien après que Newton découvrit les lois de la gravité.

Actuellement, on peut dire que les forces qui s'exercent sur un objet, qu'elles soient des forces de gravitation, nucléaires, ou électromagnétiques, résultent de l'interaction d'un objet avec un champ.

Ainsi, les forces de gravitation sont caractérisées par un champ de gravitation : la force de gravitation subie par un corps de masse M est le produit de cette masse par le champ de gravité.

Les forces électromagnétiques sont caractérisées par un champ électrique et par un champ magnétique.

Un champ peut varier en fonction du temps. Les champs de gravitation varient en général assez lentement, car les mouvements des astres sont lents. Certains champs magnétiques varient très lentement, comme le champ magnétique associé à la Terre, qui varie à l'échelle de plusieurs milliers d'années. D'autres champs varient très vite comme les champs électriques et magnétiques associés aux ondes radio ou lumineuses.

On découvrit plus tard que la Terre n'était pas le seul objet capable d'orienter les aiguilles aimantées. En effet, un fil électrique, ou une bobine de fil électrique, parcourus par un courant vont orienter l'aiguille aimanté d'une boussole perpendiculairement au fil. D'autres expériences montrèrent que les champs magnétiques ont des rapports très étroits avec les courants électriques, et le champ électrique. En faisant circuler du courant dans une bobine de fil électrique, on peut créer des champs magnétiques assez forts. On appelle ces dispositifs des électroaimants. On trouve des électroaimants un peu partout : dans les moteurs électriques,
INTRODUCTION GENERALE

derrière les écrans de télévision, dans les serrures électriques, les dynamos des bicyclettes, les hauts parleurs, etc.
STRUCTURE DE MEMOIRE

Structure du mémoire

La présentation de ce travail du mémoire est structurée en quatre chapitres :

- Le premier chapitre est consacré à exposer un état de l’art sur le champ magnétique, Compatibilité électromagnétique (CEM) et contrôle non destructif (CND).
- Le second chapitre nous a permis de faire une étude analytique de flux des fuites. En avons étudié analytiquement une bobine à noyau de fer, Transformateur cuirasse et une machine électrique tournante.
- Le troisième chapitre nous a permis de présenter les équations de Maxwell, sur la base desquelles tous les phénomènes électromagnétiques peuvent être modélisés. Les équations générales régissant les phénomènes électromagnétiques sont décrites par des équations aux dérivées partielles. Et présente la méthode des éléments finis que sera utilisée pour la résolution des modèles développés au chapitre ultérieur.
- Le dernier chapitre nous a permis de faire la présentation du logiciel de simulation ‘COMSOL’ et l’interprétation des résultats. Et on terminera notre travail par une conclusion générale.
CHAPITRE N° 1

Etat de l’art sur le champ magnétique, Compatibilité électromagnétique(CEM) et CND.
CHAPITRE N° I

I.1. Introduction

Le magnétisme se manifeste par exemple lorsqu’un aimant attire un clou en fer. C’est un phénomène distinct de la gravitation, laquelle est une interaction due à la masse des corps. En effet, les phénomènes liés à l’électricité et au magnétisme ont la même cause : la charge électrique. Ils sont réunis sous l’appellation générale d’électromagnétisme [1].

L’étude de l’électromagnétisme comprend les notions de champ magnétique, de force magnétique de Lorentz et de force électromagnétique de Laplace, d’induction électromagnétique.

I.2. Notion du champ

En électricité, le champ électrique traduit l’effet d’attraction ou de répulsion exercé par une charge sur une autre.

Le champ magnétique, lui, caractérise la force exercée par une charge électrique en mouvement ou par un aimant permanent.

Comment puis-je le percevoir? En approchant un aimant de la limaille de fer. L’effet est immédiat.

Les champs électriques et magnétiques sont présents dans la nature. Un champ électrique naturel est produit par les charges électriques de la haute atmosphère. Généralement, il est faible au niveau du sol. Il s’intensifie à l’approche de l’orage. Le champ magnétique terrestre, dont la boussole est une application connue de tous, résulte des courants circulant dans le noyau de la terre.

Ces champs naturels sont constants ou varient très lentement. Ce sont des champs continus.

La plupart des champs électriques et magnétiques produits par la nature ou par l’homme varient de façon rapide et régulière. Ce sont des champs alternatifs. Ils sont caractérisés par leur intensité.

I.3. Classification du champ

I.3.1. Champ électrique

Le champ électrique traduit l’effet d’attraction ou de répulsion exercé par une charge sur une autre. Il est présent dès qu’il existe une charge électrique.

Lorsqu’une lampe est branchée, c’est-à-dire lorsqu’elle est reliée au réseau électrique par la prise, il y a un champ électrique, même si l’interrupteur est fermé et que la lampe n’est alimentée par aucun courant.

Le champ électrique est lié à la tension, dont l’unité est le Volt. Il se mesure en Volts par mètre (V/m). Plus la tension d’alimentation d’un appareil est grande, plus le champ électrique qui en résulte est intense.
On peut comparer cette tension à la pression de l’eau dans un tuyau d’arrosage lorsqu’il est raccordé au système de distribution d’eau et que le robinet est fermé.

I.3.2. Champ magnétique

Un champ magnétique est créé par le déplacement d’une charge électrique, c’est-à-dire lorsque le courant électrique circule.

Lorsque la lampe est allumée, c’est-à-dire lorsque le courant passe dans le câble d’alimentation, il existe, en plus du champ électrique, un champ magnétique. Ce champ magnétique est produit par le passage du courant (c’est-à-dire par le mouvement des électrons) dans le fil électrique. Dans l’exemple du tuyau d’arrosage, le courant correspond au passage de l’eau dans le tuyau.

L’unité du champ magnétique est l’ampère par mètre (A/m) mais on préfère généralement utiliser le tesla (T) qui est l’unité d’une grandeur dérivée appelée «flux d’induction magnétique».

Les champs magnétiques que nous mesurons habituellement sont de l’ordre du micro tesla (μT), soit un millionième de tesla. Une autre unité de mesure du flux d’induction magnétique est parfois utilisée, le gauss (G). Un micro tesla équivaut à 10 milli gauss (1 μT = 10 mG).

Plus l’intensité du courant est élevée, plus le champ magnétique résultant est intense. Le champ magnétique diminue cependant fortement si on s’éloigne de sa source.

I.4. Le spectre électromagnétique

Les champs électromagnétiques existent depuis la naissance de l’univers. La lumière visible est le plus familier.

Le spectre électromagnétique s’étend sur une très large gamme de fréquences et donc de longueur d’onde. Aux différentes longueurs d’onde - ou fréquences - sont associés des effets spécifiques et des applications particulières.

À une distance de la source supérieure à la longueur d’onde, plus la fréquence du champ électromagnétique est élevée, plus l’énergie qu’elle dégage est importante. Aux fréquences très élevées, supérieures à 1000 THz (1000 téra-Herz, mille millions de millions de cycles par seconde), l’énergie dégagée est suffisante pour rompre des liaisons moléculaires et donc modifier la nature chimique des corps rencontrés (en produisant des «ions»). Ces ondes sont appelées radiations ionisantes (rayons gamma, rayons X, certains UV).

Les sources de ces radiations peuvent être naturelles (soleil, étoiles, corps radioactifs) ou artificielles (tubes à rayons X, lampes à UV, etc.).

Les ondes de fréquences inférieures, dont l’énergie est insuffisante pour rompre les liaisons moléculaires (elles ne provoquent pas l’apparition d’ions), sont appelées non ionisantes. La lumière visible occupe les fréquences comprises entre 385 et 750 THz (millions de millions de cycles par seconde) [2].

Aux fréquences directement inférieures, on trouve l’infrarouge puis, successivement, les micro-ondes (fours, radar, GSM), les ondes de télévision et les ondes de radiodiffusion. Elles peuvent être
produites par des sources très diverses, naturelles ou artificielles: des antennes, un feu, un radiateur, un être vivant ou un simple objet.

Les lignes et les câbles électriques ainsi que la plupart des équipements qu’ils alimentent produisent des champs de même fréquence que celle du réseau. En Europe et dans la plupart des pays du monde, cette fréquence s’élève à 50 Hz (soit 50 cycles par seconde). Aux États-Unis et au Japon, elle est de 60 Hz.

Ces fréquences appartiennent au domaine des ELF ou Extremely Low Fréquences, en anglais. C’est-à-dire des fréquences extrêmement basses. À 50 Hz, la longueur d’onde est de 6.000 km. A des distances de la source inférieures à cette longueur d’onde, le champ électrique et le champ magnétique peuvent varier indépendamment l’un de l’autre. C’est pourquoi - en particulier à 50 Hz - il est nécessaire de les considérer de manière séparée.

I.5. Les sources artificielles

Les principales sources de champ 50 Hz sont les installations électriques : lignes de transport et de distribution, transformateurs, câbles électriques des habitations, systèmes antivol, appareils électroménagers (téléviseurs, grille-pain, rasoirs, etc.), appareils d’éclairage et, d’une manière générale, tout appareil produisant ou utilisant de l’électricité (alternateur de voiture, appareils de bricolage comme les perceuses, les photocopieurs, etc.).

<table>
<thead>
<tr>
<th>Applications domestiques</th>
<th>Champ magnétique (μT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 cm</td>
</tr>
<tr>
<td>Télévision</td>
<td>30</td>
</tr>
<tr>
<td>Batteur électrique</td>
<td>50</td>
</tr>
<tr>
<td>Perceuse électrique</td>
<td>800</td>
</tr>
<tr>
<td>Rasoir électrique</td>
<td>1000</td>
</tr>
<tr>
<td>Couverture chauffante électrique</td>
<td>10 à 20</td>
</tr>
<tr>
<td>Micro-ordinateur</td>
<td></td>
</tr>
<tr>
<td>Four à micro-ondes</td>
<td></td>
</tr>
<tr>
<td>Lave-vaisselle</td>
<td></td>
</tr>
</tbody>
</table>

Tableau I.1 Exemple de valeurs du champ magnétique mesurées à proximité d’appareils électroménagers [14].

I.6. Domaine d’utilisation

Les champs électriques et magnétiques sont omni-présents dans notre environnement. Avec le développement des technologies, notre exposition s’accroît de manière significative. Les moteurs, les appareils sans fil, Télévision, Radio, Ordinateurs, fours à micro-ondes, Téléphones mobiles,
Scanneurs, appareillage médical sophistiqué, installations électriques, GSM, Radars... etc. tous ces éléments contribuent à faciliter et à améliorer notre vie quotidienne.

I.7. La Compatibilité Electromagnétique (CEM)

La directive CEM comme nouvelle approche consiste à mentionner des exigences essentielles qui peuvent se résumer qu'un système ne doit pas perturber et ne doit pas être perturbé. Ces exigences se rapportent respectivement aux aspects émissivité et immunité. Son double objectif est de favoriser les échanges commerciaux en supprimant les réglementations disparates et d'imposer un code de bonne conduite dans la gestion de l'environnement électromagnétique. Elle ne traite aucunement de l'aspect sécurité des systèmes concernés, bien qu'une meilleure maîtrise de l'environnement électromagnétique s'y rapporte. Elle mentionne qu'il faut appliquer les normes harmonisées, mais ne mentionne pas explicitement qu'il faut effectuer les essais. Les exigences essentielles constituent le minimum que doivent respecter les constructeurs et le maximum que peut demander la réglementation. Les fréquentes difficultés d'interprétation que présente la directive ont nécessité l'édition d'un guide d'application.

Certains types de produits sont exclus de cette directive car ils sont couverts par une autre directive spécifique (exemple : automobile, dispositifs médicaux implantables...) qui prend en compte la CEM. Les machines, couvertes par une directive spécifique relative à leur sécurité, dite directive Machines [6], ne sont cependant pas exclues du champ d'application de la directive CEM car les objectifs de ces deux directives sont clairement différents.

Elles ne peuvent être considérées comme spécifiques l'une par rapport à l'autre et doivent être appliquées de manière parallèle et complémentaire. Ce concept relève de l'aspect croisé de l'application des directives horizontales et verticales pour le marquage CE.

I.8. Les normes CEM

La compatibilité électromagnétique met en jeu un système « coupable » et un (ou des) système(s) « victime(s). (Il existe donc des normes relatives à chacun des deux types de systèmes mentionnés ci-dessus : les normes d’émissivité pour les coupables et d’immunité pour les victimes dont les références sont régulièrement publiées dans le Journal Officiel des Communautés Européennes. Chacune de ces normes se rapporte à un produit, une famille de produits ou à un type d'environnement. Le but des normes est tout d'abord de servir d'outil, pour démontrer, de manière rigoureuse et reproductible, la présomption de conformité aux exigences essentielles de la directive CEM. Leur application est de nature volontaire. Elles prennent en compte la plupart des phénomènes de perturbations rencontrés et permettent ainsi de valider l’aptitude d’un dispositif ou d’un système à fonctionner de façon satisfaisante dans un environnement électromagnétique prédéterminé, en fonction des niveaux de sévérité appliqués.

Cependant, la prise en compte de normes, dont une partie du contenu va dans le sens de l’amélioration du niveau de sécurité, est insuffisante pour atteindre de façon satisfaisante un objectif de sécurité.
Mais on ne peut mettre en cause l’existence des normes car elles constituent, entre autres, un moyen de conserver la maîtrise de l’environnement électromagnétique.

I.8.1. Emissivité

Les normes fondamentales contiennent à la fois des indications précises sur les méthodes de mesure et des valeurs limites. Ces normes découlent de celles du CISPR (Comité international spécial des perturbations radioélectriques), destinées à protéger les radiocommunications.

La plupart de ces normes concernent une famille de produits (exemple : les appareils de traitement de l'information (équipements informatiques essentiellement), les appareils ISM (industriels, scientifiques et médicaux) (figure I.1), etc.).

I.8.2. Immunité

En plus de la nécessaire réduction du niveau d’émissivité des sources de perturbation, s’ajoute l'aspect très important de l'immunité des systèmes.

Une immunité insuffisante face à une source de perturbation conduit à un dysfonctionnement [4].

Le manque d’immunité, c'est-à-dire la susceptibilité élevée, nécessite de prendre en compte le comportement d'un système lorsqu’il est perturbé. Il peut donc en découler des conséquences sur la sécurité.

Il existe trois types de normes relatives à l'immunité des systèmes :

- Les normes fondamentales qui décrivent un phénomène de perturbation électromagnétique et la méthodologie d'essai correspondante (exemple : immunité aux décharges électrostatiques).
- Les normes génériques qui se réfèrent aux normes fondamentales et fixent des niveaux de sévérité en fonction de deux types d'environnements relatifs aux milieux domestique et industriel.
- Les normes spécifiques aux produits ou familles de produits qui, en plus des normes génériques ci-dessus, tiennent compte de la spécificité des équipements concernés en décrivant par exemple le mode de fonctionnement en essai [5].

![Figure I.1 Systèmes coupables et victimes.](image)

I.9. L’environnement électromagnétique

La question de la représentativité des paramètres préconisés par les normes d'essais (niveaux de sévérité, formes d'ondes, installation d'essai) par rapport à l'environnement se pose fréquemment, en
particulier lorsque des aspects de sécurité sont concernés. Les normes d'immunité actuelles sont, bien sûr, basées sur les connaissances de différents types d'environnement et certaines évoluent au fur et à mesure de l'apparition de nouvelles sources de perturbations (exemple : téléphones portables) [6].

La caractérisation actuelle de l'environnement électromagnétique est suffisante pour apporter des éléments nécessaires à la normalisation concernant l'immunité minimale nécessaire au fonctionnement attendu des équipements. La connaissance est plutôt générale et basée sur des valeurs moyennes de paramètres. La gestion par des équipements spécifiques de fonctions de sécurité nécessite une connaissance plus approfondie des perturbations. Si, en fonction des résultats de l'analyse de risques sur un dispositif, on se limite par exemple à préconiser un niveau d'immunité à respecter, il est nécessaire de tenir compte de toutes les perturbations présentes et comme le précise la directive « Machines », des situations anormales prévisibles.

Or, une aggravation inopinée de l'agression électromagnétique est dans de nombreux cas très probable, donc à prévoir.

On peut également envisager que l'utilisation de tout dispositif de sécurité peut conduire à une dégradation du niveau de sécurité, si son immunité est insuffisante pour un environnement mal caractérisé.

En effet, soit, du fait de sa réactivité élevée aux défaillances, le dispositif remplit sa fonction en mode perturbé et provoque des mises en sécurité intempestives, soit il ne sera plus en état de remplir la fonction de sécurité de façon satisfaisante. Dans le premier cas, il sera retiré et la fonction de sécurité sera inexistante.

Dans les deux cas, on en déduit aisément qu’il y a aggravation du risque pour les utilisateurs.

La connaissance approfondie des paramètres de l'environnement électromagnétique est difficile à obtenir. Ce dernier est parfois constitué par des perturbations fréquemment présentes, caractéristiques du milieu industriel et/ou professionnel concerné et de perturbations aux paramètres aléatoires : fréquence et moment d'apparition, niveaux, forme d'onde, durée, etc. Ces perturbations aléatoires peuvent être causées par un équipement utilisé occasionnellement (outil portatif, téléphone portable) ou bien par la dégradation inopinée du niveau d'émissivité d'un équipement industriel. Comme ces situations sont difficilement maîtrisables, ces perturbations sont à prendre en compte. Il est donc nécessaire de pouvoir disposer de systèmes de mesure dotés d'enregistreurs, permettant des mesures sur une période suffisamment grande, afin de pouvoir capturer le maximum de perturbations. Les enregistreurs actuels télécommandables effectuent des mesures sur une période qui s'étend sur plusieurs mois et télétransmettent les résultats.

I.10. Flux de fuite magnétique (Magnetic Flux Leakage)

Les systèmes d’inspection MFL sont basés sur les mêmes principes que l’inspection par particules magnétiques. La principale différence entre la technique MFL et l’inspection par particules magnétiques est l’utilisation de capteurs. Ces capteurs, qui ont été développés dans les années 1920 et 1930, mesurent le champ magnétique autour d’un défaut. Ils permettent de réaliser une mesure quantitative contrairement à l’information plus qualitative fournie par les particules.
Le dispositif de contrôle à flux de fuite ou MFL (Magnetic Flux Leakage) est un ensemble d’appareils mettant en œuvre des détecteurs ponctuels du champ magnétique.
En effet, toute fissure débouchante ou sous-cutanée se comporte comme un entrefer créant ainsi la dispersion d’un flux magnétique hors de la pièce. Ce phénomène de dispersion est à la base du procédé magnétique de contrôle non destructif (CND) dans les aciers [7].

Cette figure montre le principe de cette méthode qui consiste à créer un champ magnétique dans la pièce qui en présence d’un défaut, subit des changements de direction et de comportement créant localement une fuite du flux magnétique. Ce flux de fuite est détecté par un capteur magnétique ou par une bobine réceptrice [8].
Le tableau ci-dessous représente la comparaison entre les méthodes de CND.

<table>
<thead>
<tr>
<th>Types de procédés</th>
<th>Méthodes de contrôle</th>
<th>Principes physiques</th>
<th>Types de défauts détectés</th>
<th>Domaines d’applicati on</th>
<th>Domaines d’applicati on</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux de fuite magnétique</td>
<td>Magnétoscopie</td>
<td>Accumulation de poudre</td>
<td>Défauts fins débouchants et sous cutanés</td>
<td>Sensibilité</td>
<td>Réservé aux aciers</td>
<td>Peu quantitatif</td>
</tr>
<tr>
<td></td>
<td>Détection de flux de fuite</td>
<td>Distorsion d’un flux magnétique</td>
<td>Défauts fins débouchants</td>
<td>Sensibilité Automatisati on</td>
<td>Fragilité des sondes</td>
<td></td>
</tr>
<tr>
<td>Électromagnétique</td>
<td>Courants de Foucault</td>
<td>Perturbations d’un courant</td>
<td>Défauts fins débouchants</td>
<td>Contrôle en ligne et sur chantier de tous produits métalliques</td>
<td>Sensibilité Automatisati on</td>
<td>Matériaux non conducteur</td>
</tr>
<tr>
<td></td>
<td>Potentiel électrique</td>
<td>Perturbations d’un courant</td>
<td>Mesure de profondeur de défauts</td>
<td>Tous produits conducteurs</td>
<td>Simplicité Faible coût</td>
<td>Contrôle manuel Lent</td>
</tr>
<tr>
<td></td>
<td>Hyperfréquence</td>
<td>Transmission ou réflexion radar</td>
<td>Hétérogénéité diverses</td>
<td>Matériaux peu conducteurs</td>
<td>Contrôle sans contact</td>
<td>Interprétation du signal</td>
</tr>
</tbody>
</table>

Tableau I.2 Les procédés de contrôle non destructif : caractéristiques

I.11. Diagnostic des machines tournantes par l’analyse du champ magnétique de fuites

Tout système électromécanique créé dans son environnement proche, un champ magnétique. Un défaut apparaissant à l’intérieur de la machine aura nécessairement des répercussions en termes de flux de fuite. L’idée est de placer un ou plusieurs capteurs de champ magnétique à l’extérieur de la machine, en soin voisinage direct. Pour surveiller la machine.

Cette méthode possède évidemment une grande potentialité : elle est non invasive. En effet, les capteurs sont situés à l’extérieur du dispositif, ce qui ne nécessite pas son démontage. Nous retrouvons ici un argument de poids en faveur de cette approche, déjà évoqué dans les paragraphes précédents. De plus, les capteurs de champ magnétique, contrairement aux capteurs de vibration, ne sont pas en contact direct avec la machine et ne sont donc pas sollicités mécaniquement. Ceci laisse donc supposer une durée de vie accrue.

L’analyse du champ de fuite du capteur par analyse fréquentielle sa base sur l’idée principale que le champ à l’extérieur est représentatif du champ dans l’entrefer et comporte les mêmes harmoniques. Il est alors possible d’effectuer un diagnostic par cette approche.
Notons pourtant que généralement un seul capteur est utilisé. Il est coutume de dire que le rapport entre l’induction interne au voisinage de la machine et l’induction externe au voisinage de la machine est 10^6. Les inductions mesurées vont donc être proche du micro tesla. Ce sont donc des champs très faibles. Les capteurs utilisés pour le diagnostic sont presque exclusivement des bobines. Ces capteurs sont scalaires (ils ne mesurent qu’une composante), souvent peu précis et ne peuvent mesurer des raies que d’une fréquence suffisamment importante.

La théorie de diagnostic inverse permet de retrouver les représentations physiques du système à partir de leur observation (mesures), elle permet de déterminer les causes et plus particulièrement les défauts en fonction des effets c’est-à-dire le champ de fuite mesuré.

Comme nous l’avons déjà mentionné le fonctionnement des dispositifs électromécaniques est basé sur la génération de champs magnétiques. Ces champs sont créés par des courants dans les bobinages et par l’aimantation des circuits magnétiques. Ils sont à l’origine du champ rayonné. Si à partir des mesures de ce champ, nous parvenons à retrouver les valeurs des aimantations et des courants du système et donc des flux associés, toute répartition non conforme des ces grandeurs sera la signature d’un défaut. Cette approche devrait donc permettre à la fois de détection, mais aussi la localisation et mieux encore la quantification du défaut.

Il convient à ce stade d’évoquer le dispositif de mesure du champ de fuite, des techniques actuelles sont basées sur l’utilisation de spires, ou d’un réseau de capteurs localisé autour de la machine.

Dans cette approche, nous nous plaçons dans l’approximation en champ proche, à savoir que les longueurs d’ondes des champs électromagnétiques émis sont très grandes par rapport aux dimensions des dispositifs et aux distances dispositifs/capteurs. En d’autres termes, les phénomènes de propagation sont négligés dans cette étude. Cette approximation est pertinente pour les dispositifs alimentés en basses fréquences (50Hz) tels que les machines électriques. Le champ magnétique alors émis par ces dispositifs peut-être représentés par un modèle classique de sources multi-polaires basé sur la théorie des harmoniques sphériques.

Si nous considérons que r est la distance entre le centre du dispositif et le point de mesure, l’induction mesurée en ce point est la somme de :

- Un terme dipolaire (ordre 1) avec une loi de décroissance en $1/r^3$.
- Un terme quadrupolaire (ordre 2) avec une loi de décroissance en $1/r^4$.
- Un terme octopolaire (ordre 3) avec une loi de décroissance en $1/r^5$.

Il est à noter que si en se plaçant à une distance r importante, les termes d’ordre élevé ont une contribution très faible par rapport aux termes d’ordres faibles.
I.12. Conclusion

Dans ce chapitre, nous avons mis en rappel les principes fondamentaux concernant le champ magnétique, le champ électrique et l’influence que peut jouer le champ électromagnétique sur l’environnement surtout au voisinage vu que ce champ s’affaiblit au fur et à mesure qu’on s’éloigne du dispositif émetteur. La compatibilité électromagnétique est un domaine qui s’intéresse à l’étude de cette influence. La distribution du champ généré constitue en général des fuites au voisinage proche du dispositif, différentes sources de champ de fuites vont être étudiées à savoir la bobine à noyau de fer, le transformateur et les machines tournantes. Enfin, nous avons clôturé ce chapitre, par l’étude des méthodes de diagnostic basées sur les mesures du champ généré à partir des capteurs.
CHAPITRE N° II

Etude Analytique des champs de fuites.

II.1. Introduction

Le champ magnétique basse fréquence peut être analysé sous deux points de vue différents : d’un côté on a la répartition du champ dans l’espace, et d’autre côté son évolution temporelle. Dans la plupart des cas, les systèmes rayonnants ont un comportement périodique (à l’exception des transitoires). Une décomposition en série de Fourier suffit donc largement pour caractériser l’évolution temporelle des grandeurs électriques. Par contre, la répartition spatiale du champ nécessite une analyse plus détaillée. L’étude de cette répartition est réservée pour un certain nombre de dispositifs suffisamment représentatifs. La recherche des points communs entre les différents cas étudiés, et d’analyse de l’influence de certains paramètres significatifs sur la répartition et l’intensité du champ dans l’air sont d’une importance significative [9].

Le schéma représentatif ci-dessous (Figure II.1) donne une classification des différents dispositifs émetteurs d’un champ magnétique, ces dispositifs se différencient par :

- Absence ou présence d’un circuit magnétique.
- Avec ou sans entrefer.

![Figure II.1 Classification des dispositifs électriques basse fréquence.](image)

Parmi les dispositifs sans circuit magnétique (ou avec un circuit magnétique ponctuel par rapport à la taille du dispositif) on peut classer les dispositifs antivol et les alimentations à découpage. La répartition spatiale du champ rayonné par ces dispositifs peut être calculée analytiquement par la loi de Biot et Savart [9]. Il s’agit donc d’un problème relativement simple, à condition de maîtriser le fonctionnement interne de l’appareil.

Dans la classe des dispositifs avec circuit magnétique on trouve les transformateurs et les machines électriques sous les deux fonctionnements moteurs et générateurs. La répartition du champ généré par
ce type d’appareils est compliquée par la présence de matériaux magnétiques, et ne peut être calculée que numériquement [10].

Dans la suite de notre étude, nous allons choisir d’étudier les champs magnétiques générés par les dispositifs suivants :

- Bobine à noyau de fer.
- Transformateur cuirassé
- Chauffage à induction
- Machines tournantes

II.2. Bobine à noyau de fer

L’importance de l’étude de la bobine à noyau de fer en régime variable est considérable en électrotechnique. Les bobines sont d’usage fréquent en électronique de puissance et elles constituent la base de toutes les machines électriques (transformateurs, alternateurs, machines asynchrones et machines à courant continu).

Les composants inductifs sont parmi les plus critiques pour le design de structures d’électronique de puissance de hautes qualités à la fois de point de vue des performances que de l’intégration. Les composantes à noyau magnétique à forte perméabilité magnétique sont très largement utilisées. Les matériaux utilisés entraînent des pertes qui peuvent être déterminées par le calcul des champs électromagnétiques à l’intérieur du noyau. De plus, leurs contributions en termes de volumes et de poids est un problème majeur pour les applications de transport et mène à l’élaboration de composants intégrés.

Le champ magnétique rayonné à l’extérieur du noyau crée des couplages parasites qui peuvent détériorer le fonctionnement de certains composants comme les filtres. Le calcul des champs de fuite est donc un aspect important de la CEM rayonnée. De nombreuses études s’intéressent à des bobines possédant des noyaux ou des géométries de bobinages très spécifiques comme des bobines à noyau cylindrique, des tores avec entrefer ou encore des bobines de mode commun (MC) dont le noyau est partiellement bobiné. Ces composants sont souvent non symétriques et le champ rayonné et leurs propriétés électriques sont fortement dépendants de la position relative entre le bobinage et le noyau. Nous disposons cependant de peu d’informations sur des champs de fuites des bobines à noyau toriques comme les inductances de mode différentiel (DM) qui sont pourtant les inductances les plus utilisées.

En effet, de fortes hypothèses de symétries sont souvent faites afin de simplifier le calcul du champ rayonné qui est souvent assimilé à celui d’une simple spire de courant.

L’étude de la bobine passe par la mise en équations de l’ensemble des phénomènes dont elle est le siège. Or, dans le cas d’une bobine à noyau de fer, la tension à ses bornes et le courant qui la traverse ne peuvent pas être simultanément sinusoïdaux. Donc, il n’est pas possible d’appliquer les résolutions classiques.

II.2.1. Vecteur champ et vecteur induction magnétique

- Dans le vide \(\mathbf{B}_0 = \mu_0 \mathbf{H} \) avec \(\mu_0 \) Perméabilité de vide \(\mu_0 = 4 \pi \times 10^{-7} \text{H.m}^{-1} \).
- Dans une substance ferromagnétique : \(\vec{B} = \mu \ast \vec{H} \). \(\mu \) Perméabilité du milieu de même unité que \(\mu_0 \). On pose \(\mu = \mu_0 \ast \mu_r \) avec \(\mu_r \) est la perméabilité relative du milieu. On vérifie que \(\vec{B} = \mu_r \ast \vec{B}_0 \).

Figure II.2 Courbe d’aimantation.

II.2.2. Bobine parfaite

Nous appellerons bobine parfaite une bobine où les phénomènes d’hystérésis, la saturation et les courants de Foucault peuvent être négligés ainsi que les pertes de flux. Il s’agit, par exemple, d’une bobine sans noyau de fer ou d’une bobine réalisée à partir de tôles isolées dont la caractéristique magnétique \(B(H) \) est linéaire.

II.2.2.1. Inductances propre, principale et de fuites

Considérons une bobine alimentée par une tension \(u \) (figure II.3.a) comportant \(N \) spires parcourues par un courant instantané \(i \), qui crée, dans chaque spire, un flux magnétique \(\phi_r \) :
- Une partie des lignes d’induction, correspondant à un flux \(\phi \), est entièrement canalisée par le circuit magnétique.
- L’autre partie, correspondant au flux de fuites \(\phi_r \), présente un trajet partiellement en dehors du circuit magnétique.
- Notons que, le circuit magnétique est un circuit fermé pouvant être constitué de matériaux de natures différentes [matériaux ferromagnétiques ou non (entrefers)].
- Comme on peut signaler, qu’il est difficile de déterminer avec précision le trajet des lignes d’induction associé au flux de fuites. On suppose, pour simplifier l’étude, que les fuites sont localisées uniquement au niveau de l’enroulement.
La figure (II.3.c), montre un exemple de lignes d’induction obtenu par simulation (logiciel femm, Méthode des éléments finis) [11].
Dans le cas du circuit magnétique non saturable, \mathcal{R} et \mathcal{R}_f étant constants, les coefficients L, L_p et L_f le sont également.
Les inductances sont définies par les formules suivantes (figure II.3.b) :

- l’inductance propre L de la bobine par :
 \[L = \frac{N\times\Phi_t}{I} \] (II.1)

- l’inductance principale L_p par :
 \[L_p = \frac{N\times\Phi}{I} = \frac{N^2}{\mathcal{R}} \] (II.2)
Où \mathcal{R} représente la réluctance du circuit magnétique,

- l’inductance de fuites L_f par :
 \[L_f = \frac{N\times\Phi_f}{I} = \frac{N^2}{\mathcal{R}_f} \] (II.3)
Où \mathcal{R}_f représente la réluctance du trajet du flux de fuites.
La loi des nœuds appliquée au point M s’écrit (figure II.3.b) :
\[\Phi_t = \Phi + \Phi_f \] (II.4)
L’inductance propre est donc la somme des inductances principale et de fuites :
\[L = L_p + L_f \] (II.5)

II.2.2.2. Équations des tensions, Schéma équivalent
Supposons que la bobine (figure II.3.a) est maintenant alimentée par une tension sinusoïdale d’expression :
\[U = U_{\text{max}} \times \sin \omega t \] (II.6)
Avec : ω pulsation de t temps.

Chaque spire est le siège d’une fém (force électromotrice) auto-induite :

$$e_a = -\frac{d\varphi_t}{dt} \quad (\text{II.7})$$

Ce qui correspond, pour l’ensemble du bobinage, à une fém :

$$e_t = N e_a \quad (\text{II.8})$$

En utilisant la convention récepteur, la tension s’écrit :

$$U = r i - e_t = r i + N \frac{d\varphi_t}{dt} = r i + L \frac{di}{dt} \quad (\text{II.9})$$

avec r résistance du bobinage.

Compte tenu de (II.9), la relation (II.4) devient :

$$U = r i + N \frac{d\varphi_t}{dt} + L \frac{d\varphi_t}{dt} \quad (\text{II.10})$$

où encore

$$U = r i + Lf \frac{di}{dt} + N \frac{d\varphi_t}{dt} \quad (\text{II.11})$$

Pour un circuit non saturable, dans le cas d’une alimentation par une tension sinusoïdale, le flux φ et le courant absorbé i sont sinusoïdaux. On peut donc utiliser la notation complexe, ce qui conduit à :

$$\bar{U} = r\bar{I} + jLf\omega\bar{I} + jN\omega\bar{\varphi} \quad (\text{II.12})$$

II.2.3. Bobine réelle

La bobine réelle est le siège de phénomènes non linéaires qui compliquent énormément les calculs. Il existe, en particulier, au niveau du circuit magnétique :

- La saturation du matériau : B et H ne sont plus proportionnels.
- L’hystérésis magnétique qui se traduit par un dédoublement de la caractéristique $B(H)$.
- L’apparition de courants induits appelés courants de Foucault.

Les deux derniers phénomènes sont à l’origine de pertes dans le circuit magnétique, appelées pertes par hystérésis et pertes par courants de Foucault ou encore pertes fer.

Pour analyser le comportement de la bobine, deux méthodes sont envisagées.

- La première méthode consiste à linéariser le problème et à remplacer la bobine réelle par une bobine équivalente où toutes les grandeurs sont sinusoïdales ; on peut, alors, utiliser les outils habituels de calcul.
- La deuxième méthode consiste à prendre en compte les phénomènes non linéaires ; les équations obtenues sont alors traitées par ordinateur. Nous allons présenter plus tard la méthode de résolution des équations et quelques modèles permettant de décrire les phénomènes non linéaires qui régissent le fonctionnement de la bobine à noyau de fer.

Une bobine d’induction est souvent appelée inductance. Elle est constituée d’un noyau en alliage magnétique doux et d’un bobinage conducteur à N spires. Le noyau peut être ouvert et présenter un entrefer.

Les figures (II.5) montrent :
Le module de l’induction dans le plan de coupe, en bleu les faibles inductions, en rouge les inductions moyennes et en jaune les plus fortes inductions.

Les lignes de champs magnétiques, dessinant en coupe le spectre magnétique du système. Entre deux lignes d’induction on observe la coupe des tubes d’induction. Le calcul est mené de telle façon qu’entre deux lignes de champ se trouve la même quantité de flux magnétique.

Figure II.4 Bobine d’induction en coupe.

Figure II.5. Les lignes de fuite d’une bobine à noyau de fer.

II.3. Transformateur cuirassé

Dans cette technologie, le circuit magnétique entoure les enroulements formés de bobines rectangulaires à axe horizontal. Le circuit magnétique, de section rectangulaire est constitué de tôles posées à plat. La cuve assure le calage du circuit magnétique et des enroulements.
Ces transformateurs sont utilisés au sein des réseaux de transport et de distribution où les surtensions transitoires sont fréquentes. Dans cet environnement, ils doivent se prémunir des effets néfastes de ces surtension sur les enroulements. Pour cela des écrans sont utilisés afin de réduire les contraintes liées aux champs électriques dans les bobinages [12].

II.3.1. Représentation en terme de circuit électrique

Nous sommes habitués aujourd'hui à utiliser, pour décrire le fonctionnement des transformateurs, des modèles électriques équivalents représentés par leurs équations, ce qui revient au même, par des schémas électriques.

Pour un même transformateur, ces schémas peuvent différer sensiblement en fonction du but poursuivi, mais aussi de la culture des utilisateurs. Un schéma suffisamment précis peut servir de référence dans cette partie en suivant une voie de raisonnement basée sur la physique du champ magnétique et nous y renvoyons le lecteur soucieux de disposer d'une interprétation physique des phénomènes présents dans le transformateur.

Par contre, nous allons ci-dessous suivre une approche moins précise et plus abstraite, mais plus conforme à l'esprit de la théorie classique des circuits.

II.3.1.1. Modèle à inductances couplées

On peut considérer qu'un transformateur est formé de deux bobines couplées magnétiquement, comme représenté à (la figure II.7).

En théorie des circuits linéaires, le modèle de base d'un transformateur "réel" à deux enroulements est l'inductance couplée, qui est définie par les équations :

\[\psi_1 = L_1 i_1 + M i_2 \]

(II.13)
$
\psi_2 = M i_1 + L_2 i_2
$ \hspace{1cm} (II.14)

où ψ_1 et ψ_2 sont les flux encerclés par les deux enroulements, i_1 et i_2 les courants, tandis que L_1 et L_2 sont les inductances propres alors que M représente l'inductance mutuelle. Nous représenterons cet élément comme indiqué à (la figure II.8).

Une variation des courants i_1 ou i_2 entraîne une variation proportionnelle des flux ψ_1 et ψ_2 et, si nous supposons en outre que les enroulements ne présentent pas de résistance ohmique, fait donc apparaître aux bornes des bobinages une tension :

$u_1 = \frac{d\psi_1}{dt}$ \hspace{1cm} (II.15)

$u_2 = \frac{d\psi_2}{dt}$ \hspace{1cm} (II.16)

Pour que cet élément soit passif, c'est-à-dire qu'il ne puisse pas fournir indéfiniment de l'énergie aux circuits extérieurs, ou de façon équivalente qu'il ne puisse pas se comporter de lui-même en générateur d'énergie, il faut que sa matrice d'inductance, dont les composantes sont L_1, L_2 et M, soit définie positive, ce qui implique :
CHAPITRE N° II

\[
L_1 \geq 0 \quad \text{(II.17)}
\]

\[
L_2 \geq 0 \quad \text{(II.18)}
\]

\[
M^2 \leq L_1 \cdot L_2 \quad \text{(II.19)}
\]

Supposant \(L_1 \) et \(L_2 \) non nuls, on définit le coefficient de couplage :

\[
\frac{|M|}{\sqrt{L_1 \cdot L_2}} \quad \text{(II.20)}
\]

Ce coefficient est inférieur ou égal à 1. Dans le cas où ce coefficient est égal à 1, on dit que le couplage est parfait et on parle d’un transformateur parfait.

Si le couplage est faible, on évite de parler de transformateur : on garde le terme plus général d’inductance couplée.

Complétant les équations (II.15) (II.16), et pour tenir compte du fait que chaque bobinage possède en plus une résistance (\(R_1 \) ou \(R_2 \)), on peut écrire en utilisant (II.13) (II.14) :

\[
u_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} + R_1 i_1 \quad \text{(II.21)}
\]

et

\[
u_2 = M \frac{di_1}{dt} + L_2 \frac{di_2}{dt} + R_2 i_2 \quad \text{(II.22)}
\]

Ces équations sont celles de deux inductances couplées, chacune en série avec une résistance, ce qui se représente par le schéma ci-dessous.

![Figure II.9](image-url)

II.3.1.2. Modèle sans inductances couplées

On préfère souvent remplacer le circuit de la figure (II.9) par un circuit qui lui est équivalent du point de vue du comportement extérieur, mais qui ne comporte pas d’inductances couplées.

On définit pour cela les inductances:
CHAPITRE N° II

\[
\ell_1 = L_1 - kM \quad \text{(II.23)}
\]

et

\[
\ell_2 = L_2 - \frac{1}{k}M \quad \text{(II.24)}
\]

où \(k \) est une constante à fixer.

Les coefficients \(\ell_1 \) et \(\ell_2 \) sont appelés les inductances de fuite des bobinages primaire et secondaire. Les valeurs de \(\ell_1 \) et \(\ell_2 \) dépendent du choix de la valeur \(k \). Pour que ces coefficients soient tous deux positifs ou nuls, compte tenu de (II.23)/(II.24), il faut choisir \(k \) tel que :

\[
\frac{L_1}{M} \leq k \leq \frac{M}{L_2} \quad \text{(II.25)}
\]

Si on considère l'interprétation physique de ces grandeurs, on s'attend à ce que, pour que cette condition soit satisfaite, on ait :

\[
k \approx \frac{n_1}{n_2} \quad \text{(II.26)}
\]

où \(n_1 \) et \(n_2 \) sont les nombres de spires des deux enroulements.

En utilisant les écritures (II.23)/(II.24), les formules (II.21)/(II.22) peuvent s'écrire :

\[
u_1 = \ell_1 \frac{di_1}{dt} + (kM) \frac{d}{dt} (i_1 + \frac{1}{k}i_2) + R_1 i_1 \quad \text{(II.27)}
\]

et

\[
u_2 = (1-k) (kM) \frac{d}{dt} (i_1 + \frac{1}{k}i_2) + \ell_2 \frac{di_2}{dt} + R_2 i_2 \quad \text{(II.28)}
\]

Les équations (II.27) (II.28) peuvent s'écrire sous une forme plus simple en définissant :

\[
L_\mu = kM \quad \text{(II.29)}
\]

\[
i_\mu = i_1 + \frac{i_2}{k} \quad \text{(II.30)}
\]

On obtient alors les tensions :

\[
u_1 = \ell_1 \frac{di_1}{dt} + L_\mu \frac{di_\mu}{dt} + R_1 i_1 \quad \text{(II.31)}
\]

et

\[
u_2 = \frac{L_\mu d}{dt} i_\mu + \ell_2 \frac{di_2}{dt} + R_2 i_2 \quad \text{(II.32)}
\]

Les équations (II.31) et (II.32) correspondent au circuit équivalent de la (figure II.10), qui ne comporte que des éléments classiques de la théorie des circuits (transformateur idéal, inductances, résistances).

On notera qu’il est possible de choisir \(k = 1 \), donc d’éliminer le transformateur idéal du circuit équivalent, mais qu’il faut en général pour cela accepter dans le circuit équivalent des éléments de valeur négative.
Une autre simplification possible consiste à donner à k une des valeurs extrêmes de l’intervalle (II.25), auquel cas l’une des inductances de fuite s’annule.

Le circuit équivalent de la (figure II.10) n’est autre qu’un cas particulier du circuit équivalent, sous des hypothèses plus générales, et que nous reproduisons ci-dessous. Il suffit en effet de simplifier le circuit de la figure II.11 en supposant que ψ_μ est proportionnel à i_μ ($\psi_\mu = L_\mu i_\mu$) pour retrouver le circuit de la (figure II.10).

Il est montré que l’élément ψ_μ (i_μ) tient compte essentiellement du comportement du noyau ferromagnétique. Le flux ψ_μ est lié au flux Φ du circuit magnétique, tandis que le courant i_μ est lié à sa force magnétomotrice.

Contrairement au circuit de la (figure II.10), le circuit équivalent de la (figure II.11) permet de tenir compte de la saturation magnétique et des pertes magnétiques. C’est donc à ce circuit que nous nous référerons pour la suite de cette étude.

Notons encore que, en présence de saturation ou de pertes magnétiques, le choix du rapport k n’est plus arbitraire, car une modification de ce rapport entraînerait le remplacement des inductances de fuite par des éléments moins simples. On considère généralement que, dans ce cas, la "bonne" valeur de k est le rapport des nombres de spires (n_1 / n_2).
II.3.2. Utilisation des phaseurs

Dans beaucoup de cas, les transformateurs sont utilisés dans des circuits où les grandeurs électriques sont sinusoïdales et de fréquence fixée (particulièrement 50 Hz pour notre réseau et le réseau de distribution européen). En faisant l'hypothèse de la linéarité, on sait que les dipôles (éléments à une seule branche) sont alors complètement définis par la valeur de leur impédance.

On peut toujours les représenter par un élément réactif (inductance dans notre cas) et une résistance. On peut opter soit pour une représentation série, soit pour une représentation parallèle.

L'impédance μZ qui rend compte des propriétés du circuit magnétique est habituellement représentée sous la forme d'une inductance L_μ en parallèle avec une résistance R_p. Le circuit équivalent de la (figure II.11) prend alors l'aspect ci-dessous :

![Figure II.12 circuit équivalent de référence.](image)

Nous utiliserons aussi la notation R_μ ou R_{pm} à la place de R_p. Les coefficients L_μ et R_μ qui rendent compte des propriétés du circuit magnétique ont une valeur qui peut dépendre de la fréquence considérée. L'inductance rend compte de l'accumulation d'énergie magnétique dans le noyau, tandis que la résistance rend compte des pertes magnétiques.

Les pertes magnétiques proviennent des variations du flux Φ dans le noyau. Elles sont de deux types :

- Les pertes par hystérésis résulte lorsque le flux Φ varie sinusoïdalement en fonction du temps, on parcourt sur chaque période de Φ un cycle d'hystérésis. Pour limiter ces pertes, on utilise pour le noyau des tôles d'acier au silicium dont le cycle d'hystérésis est très étroit.

- Les pertes par courant de Foucault résultant des courants tourbillonnaires induits dans la masse du noyau par les variations de flux qui s'y produisent. La réduction des pertes est obtenue par le feuilletage du noyau (réalisation sous forme d'empilement de tôles minces).

En présence de saturation, la représentation à l'aide de phaseurs n'est en principe plus valide. On se permet cependant de l'utiliser en attribuant à L_μ et R_μ des valeurs qui dépendent du flux principal ou, ce qui revient au même lorsque la fréquence est imposée à partir de la tension :

$$\bar{E} = j \omega \bar{\psi}_\mu$$ (II.33)
C'est ce que rappelle la barre oblique qui traverse ces éléments à la (figure II.12). Il s'agit là d'une incohérence théorique acceptable lorsque le niveau de saturation est modéré. Comme les pertes magnétiques croissent approximativement comme le carré de l’amplitude de l’induction magnétique B_{max}, donc aussi du flux Φ ou ψ_μ, et finalement de la tension E, la valeur de la résistance R_μ dépend relativement peu de la tension. Si on avait adopté une représentation série de l’impédance de magnétisation Z_μ, la résistance correspondant aux pertes magnétiques aurait été beaucoup moins constante !

Si les grandeurs électriques ne sont pas sinusoïdales, il faudrait en principe pour pouvoir utiliser la méthode des phaseurs considérer autant de circuits équivalents qu’il y a d’harmoniques dans les grandeurs électriques. En présence de saturation, non seulement il y’a toujours des harmoniques, mais les circuits équivalents correspondant seraient couplés via les éléments non linéaires. La saturation n’est pratiquement jamais modélisée par cette méthode à cause de la lourdeur des calculs auxquels celle-ci conduit.

En pratique, on attribue aux résistances R_1 et R_2 une valeur supérieure à leur valeur ohmique (c’est-à-dire mesurée en courant continu). Ces résistances peuvent ainsi tenir compte des pertes magnétiques associées aux flux de fuite. Ces pertes peuvent s'expliquer par le fait que, à fréquence non nulle, les flux de fuite induisent à l'intérieur des conducteurs des bobinages des courants de Foucault (ainsi que des pertes magnétiques dans la partie du noyau parcourue par ces champs de fuite). A noter que l’effet de peau, souvent invoqué pour justifier l’augmentation des résistances R_1 et R_2, ne joue pourtant le plus souvent qu’un rôle secondaire dans cette augmentation.

L’effet de peau ne joue un rôle significatif dans l’augmentation de R_1 et R_2 que si les conducteurs ont un rayon significatif par rapport à la profondeur de peau. A titre d’exemple, à la fréquence de 50 Hz, la profondeur de peau du cuivre est d’environ 1 cm, de sorte que ce dernier phénomène n’intervient pas dans les petits transformateurs, le rayon de leurs conducteurs étant beaucoup plus faible. De plus, la proximité d’autres conducteurs parcourus par un courant de même sens diminue encore l’effet de peau.

Remarque

Les circuits équivalents sont souvent utilisés en déterminant les valeurs de leurs éléments expérimentalement et non par calcul. L'interprétation physique de leurs éléments ne doit pas être prise au pied de la lettre.

Ainsi, les pertes correspondant à R_1 et R_2 sont couramment considérées comme des pertes Joule dans les bobinages, alors que, comme expliqué ci-dessus, une partie de ces pertes trouve en fait son origine dans le noyau, puisque les flux de fuite empruntent en partie ce dernier. De même, les pertes correspondant à la résistance R_μ sont couramment considérées comme des pertes du noyau magnétique, alors que le flux principal Φ n'est pas parfaitement canalisé par le noyau magnétique de sorte que la résistance R_μ tient aussi compte des pertes magnétiques occasionnées par ce flux en dehors du noyau (dans les bobinages, la cuve…). Enfin, la distinction entre un flux principal et des flux de fuites n'est pas rigoureuse.
En passant aux phaseurs, puisqu'en régime tous les courants et tensions sont des grandeurs sinusoïdales de pulsation ω, on peut remplacer les inductances par des impédances imaginaires :

\[
\begin{align*}
 jX_1 &= j\omega \ell_1 \\
 jX_2 &= j\omega \ell_2 \\
 jX_\mu &= j\omega L_\mu
\end{align*}
\]

(II.34)
(II.35)
(II.36)

Avec ces définitions, les équations analogues à (II.34) (II.35) qui décrivent le fonctionnement du transformateur selon le circuit équivalent de la (figure II.12) deviennent :

\[
\begin{align*}
 U_1 &= (R_1 + j X_1) I_1 + (j X_\mu \parallel R_p) I_\mu \\
 U_2 &= \frac{1}{k} (j X_\mu \parallel R_p) I_\mu + (R_2 + j X_2) I_2
\end{align*}
\]

(II.37)
(II.38)

II.4. Machines électriques

Les machines électriques tournantes produisent des champs électromagnétiques statoriques et rotoriques. L'interaction de ces champs est à l'origine du couple électromagnétique nécessaire au fonctionnement des moteurs. En électrotechnique classique, on considère que l'induction est entièrement canalisée par le circuit magnétique. Pourtant des fuites électromagnétiques existent et leurs sources sont multiples. Nous distinguerons deux catégories de fuites pour un moteur, situées aussi bien au niveau de l'induit que de l'inducteur.

- Les fuites internes ; Elles ont certes un effet sur le fonctionnement du moteur mais elles ne perturbent pas l'environnement. Ce sont par exemple les fuites d'encoches et les fuites différentielles de phases et d'encoches (dites fuites zigzag). Nous ne nous y intéresserons donc pas.

- Les fuites externes ; Elles nous intéressent tout particulièrement dans le cadre d'une recherche sur le champ généré. Ce sont les fuites d'extrémités et du circuit magnétique ainsi que les fuites dues aux connexions, localisées au niveau des arrivées de courant et au niveau des enroulements. Dans les utilisations habituelles des moteurs, les fuites externes sont négligées. Cependant, ces faibles valeurs de champ suscitent un intérêt croissant. En effet, les études dans le domaine de la compatibilité électromagnétique portaient, jusqu'à présent, essentiellement sur les composants électroniques agressés par des champs magnétiques, cependant il semblerait judicieux de minimiser ces attaques par une meilleure connaissance des sources d'agression, comme peuvent l'être des moteurs. Le but serait donc de prévenir plutôt que de guérir, les deux étant bien entendu complémentaires et nécessaires.

II.4.1. Sources de fuites

Dans cette partie, nous allons évoquer les différentes sources de fuites électromagnétiques qui vont créer soit des fuites internes au moteur, soit des fuites externes.

II.4.1.1. Fuites internes

II.4.1.1.1. Fuites d'encoches

Les lignes d'induction correspondant à ces fuites se referment autour des conducteurs.
II.4.1.1.2. Fuites différentielles
Tous les harmoniques induisent dans l'enroulement qui les produit des forces électromotrices de pulsation ω. Le calcul de la force électromotrice d'une machine s'effectue la plupart du temps en supposant le flux sinusoidal, ce qui n'est pas le cas. Pour tenir compte de la déformation périodique du champ, il faut évaluer la différence entre le champ déformable et le champ fictif indéformable. La différence entre ces deux champs produit un flux appelé flux différentiel. Il circule dans l'entrefer entre les dents de l'induit et de l'inducteur, dans les bobines induites.

II.4.1.2. Fuites externes

II.4.1.2.1. Fuites d'extrémités
Les lignes d'induction correspondant à ces fuites se referment à l'extérieur du moteur, elles sont sources de champ rayonné. Les extrémités sont constituées des têtes de bobines statoriques et des anneaux de court-circuit de la cage d'écureuil.

II.4.1.2.2. Fuites du circuit magnétique
Le flux d'une armature magnétique a tendance à se renfermer par la seconde armature et par conséquent, il crée des fuites externes. Ces fuites sont donc responsables des champs générés dans le voisinage et à qui nous intéressons par la suite.

II.4.2. Multipôles
Pour déterminer les fuites, il est indispensable d'en connaître l'origine. Toute source de champ magnétique peut être décomposée en une combinaison de différents multipôles. Une telle identification multipolaire des moteurs facilitera la compensation des champs rayonnés. Les structures multipolaires les plus utilisées sont des : dipôles, quadripôles et octupôles [13].

II.5. Conclusion

Dans ce chapitre, nous avons étudié analytiquement le champ de fuite pour un certain nombre de dispositifs. L'étude de la bobine à noyau de fer reste un problème délicat à cause des phénomènes non linéaires dont elle est le siège et de l'imbrication de ces problèmes. Pour étudier son comportement, on dispose de deux outils :
- un schéma équivalent où tous les éléments sont constants, il permet de résoudre le problème sous forme littérale.
- un modèle numérique qui prend en compte les phénomènes non linéaires.
Dans les transformateurs les pertes magnétiques proviennent des variations du flux Φ dans le noyau. Elles sont de deux types :
- Les pertes par hystérésis résulte lorsque le flux Φ varie sinusoidalement en fonction du temps, on parcourt sur chaque période de Φ un cycle d'hystérésis. Pour limiter ces pertes, on utilise pour le noyau des tôles d'acier au silicium dont le cycle d'hystérésis est très étroit
- Les pertes par courant de Foucault résultant des courants tourbillonnaires induits dans la masse du noyau par les variations de flux qui s'y produisent. La réduction des pertes est obtenue par le feuilletage du noyau (réalisation sous forme d'empilement de tôles minces).
Dans un moteur nous distinguerons deux catégories de fuites, situées aussi bien au niveau de l'induit que de l'inducteur. Nous avons discuté les différentes sources de fuites électromagnétiques qui vont créer soit des fuites internes au moteur, soit des fuites externes.
Méthodes numériques.
III.1. Introduction

Nous présentons dans ce chapitre, les bases mathématiques des équations électromagnétiques pour la modélisation d’un problème électrotechnique, à travers le rappel des équations de Maxwell, ainsi que les différentes formulations magnétostatiques et magnétodynamiques qui en résultent. Ces formulations conduisent à des équations aux dérivées partielles auxquelles il faut associer des conditions aux limites et des conditions d’interfaces.

La résolution analytique de telles équations nécessite généralement des fortes hypothèses simplificatrices, et ne rendent pas donc compte de la réalité des phénomènes physiques.

III.2. Équations de Maxwell

L’essence de l’électromagnétisme réside dans les équations de Maxwell, qui étaient formé par James Clerk Maxwell en 1864 et qui sont encore loin d’être résolu. Les équations de Maxwell forment un ensemble très symétrique des équations aux dérivées partielles, susceptibles d’être exprimées sous nombreuses formes en utilisant différents formalismes mathématiques, comme scalaires, vecteurs ou tenseurs.

Maxwell a utilisé une forme scalaire, la notation vectorielle actuelle appliquée en électromagnétisme est principalement due à Oliver Heaviside depuis les années 1880.

La répartition spatiale et temporelle des champs magnétique et électrique est donnée par les équations de Maxwell [14] [16].

III.2.1. Loi de Maxwell Gauss (électrique)

\[\text{div}(\vec{D}) = \rho \Rightarrow \iint_s \vec{D} \cdot d\vec{s} = \iiint_v \rho \, d\tau = Q_i \]

(III.1)

III.2.2. Loi de Maxwell Faraday (induction)

\[\text{rot}(\vec{E}) = - \frac{\partial \vec{B}}{\partial t} \Rightarrow \oint \vec{E} \cdot d\vec{l} = - \frac{d}{dt} \iint_s \vec{B} \cdot d\vec{s} \]

(III.2)

III.2.3. Loi de conservation de flux

\[\text{div}(\vec{B}) = 0 \Rightarrow \iint_s \vec{B} \cdot d\vec{s} = 0 \]

(III.3)

III.2.4. Loi de Maxwell Ampère

\[\text{rot}(\vec{H}) = \vec{j}_c + \frac{\partial \vec{D}}{\partial t} \Rightarrow \oint \vec{H} \cdot d\vec{l} = \iint_s \left(\vec{j} + \frac{\partial \vec{D}}{\partial t} \right) \, d\vec{s} \]

(III.4)

Avec :

\(\vec{H} \) : Champ magnétique [V/m].

\(\vec{E} \) : Champ électrique [V/m].

\(\vec{B} \) : Induction magnétique[T].

\(\vec{D} \) : Induction électrique [C/m²].
t : Le temps [s].
dl : Elément de longueur [m].
ds : Elément de surface [m²].
dv : Elément de volume [m³].
\(\vec{j}_c \) : Densité de courant de conduction [A/m²].
\(\rho \) : Densité de charge volumique [C/m³].
\(Q_i \) : charge contenue dans le volume V[C].

Ces équations sont associées aux relations constitutives des matériaux qui sont en général, anisotropes ou non linéaires.

III.3. La loi d’Ohm

C’est la loi exprimant, dans un milieu conducteur la densité de courant \(\vec{j} \) en fonction du champ électrique \(E \), la loi s’applique à tout milieu présentant une conductivité électrique.

\[
\begin{align*}
\vec{j}_c &= \sigma \vec{E} & \text{milieu conducteur} \quad (\text{III.5}) \\
\vec{j}_c &= \sigma \vec{E} + \vec{j}_s & \text{milieu conducteur avec source} \quad (\text{III.6})
\end{align*}
\]

\(\sigma \) : La conductivité (S/m).

\(J_s \) : La densité de courant source (A/m²)

III.3.1. Relations de passage

Les champs électriques et magnétiques des différents milieux sont liés à l’interface par des relations de continuité. Soient deux milieux \(\Gamma_1 \) et \(\Gamma_2 \) et soit \(n_{12} \) le vecteur normal à la surface dirigé du milieu \(\Gamma_1 \) vers le milieu \(\Gamma_2 \). (Figure III.1).

La discontinuité du milieu de la composante tangentielle du champ magnétique \(\vec{H} \) due aux densités de courants surfaciques \(K_s' \).
La conservation de la composante tangentielle du champ électrique \vec{E}
$$ (\vec{E}_1 - \vec{E}_2) \wedge \vec{n} = 0 \quad (\text{III.8}) $$
La discontinuité de la composante du déplacement électrique \vec{D} due aux charges surfaciques σ_s.
$$ (\vec{D}_1 - \vec{D}_2) \cdot \vec{n} = 0 \quad (\text{III.9}) $$
La conservation de la composante normale de l’induction magnétique \vec{B}
$$ (\vec{B}_1 - \vec{B}_2) \cdot \vec{n} = 0 \quad (\text{III.10}) $$

III.4. Formulation des équations de Maxwell

Les équations de Maxwell contiennent des dérivées partielles couplées par rapport aux variables de l’espace et du temps des champs de vecteurs E, H (appelés champs électriques et magnétiques) ainsi que les champs de vecteurs D et B (appelés induction électrique et magnétique) à la densité de courant J et à la densité de charge électrique ρ. Ces équations représentent une synthèse des lois de Faraday sur l’induction, les lois d’Ampère qui sont élaborées au cours de la première moitié du XIXe siècle, ainsi que les lois de Gauss sur les charges. La formulation originale est allée si loin dans sa description ce qui a donné naissance à la première unification des phénomènes électriques et magnétiques. Elle s’applique partout où la distribution de courant et de charge est continue.

III.4.1. Les équations de Maxwell sous forme locale ou différentielle

Les hypothèses simplificatrices généralement posées dans le traitement des équations de modélisations des problèmes Electrotechniques sont :
- Dans le domaine de l’électrotechnique, les fréquences de travail sont inférieures aux radios fréquences qui sont de l’ordre 10^{12} Hz, ce qui nous permet de négliger les courants de déplacement $\frac{\partial \vec{D}}{\partial t}$ devant les courants de conductions \vec{J}_c dans l’équation (III.6). Le système est quasi-stationnaire.

Les charges d’espace dans les conducteurs sont négligées dans l’équation (III.1) ainsi pour les conducteurs le rapport (ε/σ) est très faible, de l’ordre de 10^{-10} s^{-1}. Ce qui est négligeable devant celui qu’on considère pour les fréquences inférieures à 10^{12} Hz.

En considérant les hypothèses simplificatrices précédentes, les équations de Maxwell s’écrit sous la forme suivante :

La forme générale des équations de Maxwell sous la forme différentielle est la suivante:

$$ \begin{cases} \nabla \times \vec{E} + \frac{\partial \vec{D}}{\partial t} = 0; \\
\nabla \times \vec{H} - \frac{\partial \vec{B}}{\partial t} = \vec{J} \\
\nabla \cdot \vec{B} = 0 \\
\nabla \cdot \vec{D} = \rho \end{cases} \quad (\text{II.11}) $$

$$ \begin{cases} \nabla \cdot \vec{B} = 0 \\
\nabla \cdot \vec{D} = \rho \end{cases} \quad (\text{II.12}) $$
Les équations (III.11) composées respectivement de la loi de Faraday et la loi d’Ampère sont des équations d’évolution, alors que les équations (III.12) qui représentent la loi de Gauss magnétique et Gauss électrique sont des équations de contrainte. Bien que nous présentions ces équations en seul bloc. La relation de conservation de la charge se déduit à partir de la combinaison de la loi d’Ampère et la loi de Gauss électrique :

\[\text{div}(\text{rot}H) = \text{div}\left(\frac{\partial D}{\partial t}\right) + \text{div}J \]

Utilisant le fait que \(\text{div}(\text{rot}H) = 0 \), nous aurons :

\[\text{div}J + \frac{\partial \rho}{\partial t} = 0 \quad \text{(III.13)} \]

III.4.2. Lois de comportement et Classifications des milieux

Afin de modéliser complètement les phénomènes électromagnétiques, il est nécessaire de rajouter les lois de comportement caractérisant les différents milieux.

La classification d'un milieu est régie par les relations constitutives et ces paramètres appropriés. Les définitions couramment utilisées pour un milieu sont discutées comme suit:

1. Si \(D, B \) et \(J \) varient linéairement avec \(E, H \) et \(E \) respectivement ; alors \(\varepsilon, \mu \) et \(\sigma \) sont indépendantes des amplitudes du champ. Sous ces conditions, le milieu est appelé linéaire dans le cas contraire le milieu est non linéaire.

2. Si \(\varepsilon, \mu, \sigma \) ne dépendent pas des coordonnées spatiales, le milieu est homogène, sinon il est hétérogène.

3. Si \(D \) est parallèle à \(E \), \(B \) est parallèle à \(H \) et \(J \) est parallèle à \(E \), le milieu est isotrope, sinon, il est anisotrope.

Pour un milieu linéaire, homogène et isotrope, nous pouvons écrire :

\[D = \varepsilon E \]
\[B = \mu H \]

Avec :

- \(\varepsilon \) : La permittivité (F/m),
- \(\mu \) : La perméabilité (H/m) et

Les équations données à (III.1) et (III.2) sont adaptés pour la détection macroscopique. Les champs auxiliaires \(D \) et \(B \) sont introduits lorsque tous les charges sont inclus en tant que sources. Ces champs contiennent cependant des parties quoi implicitement des sources, à savoir la charge liée à la densité de courant, sous la forme de champs de polarisation et des courants.

III.5. Modèles électromagnétiques

Sur la base des équations de Maxwell simplifiées relatives au domaine de l’électrotechnique nous définirons les modèles magnétostatique et magnétodynamique.

III.5.1. Modèle magnétostatique
Dans le cas de la magnétostatique, on suppose que le champ magnétique est produit par des sources de courant indépendantes du temps. Le terme \(\frac{\partial \vec{B}}{\partial t} \) est nul et les champs électrique \(\vec{E} \) et magnétique \(\vec{B} \) sont découplés. Le système d'équations régissant les phénomènes magnétostatiques s'écrit :

\[
div(\vec{B}) = 0 . \tag{III.14}
\]

\[
\vec{rot}(\vec{H}) = j_s \tag{III.15}
\]

A ce système, on peut ajouter la loi de comportement des matériaux magnétiques ainsi que les conditions aux limites.

III.5.2. Modèle magnétodynamique

Dans le cas magnétodynamique, les sources de tension ou de courant varient en fonction du temps, cela veut dire que les courants induits résultants feront le couplage du champ électrique et magnétique. Le système d'équations régissant les phénomènes magnétodynamiques s’écrit :

\[
\vec{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t} . \tag{III.16}
\]

\[
\vec{rot}(\vec{H}) = j_s^* + \sigma \vec{E} . \tag{III.17}
\]

Il faut ajouter à ce système les lois de comportement des matériaux électriques et magnétiques et les conditions aux limites.

III.6. Choix de la variable d’état

Pour traiter les équations magnétostatique et magnétodynamique différentes formulations mathématiques du problème peuvent êtres obtenues, soit en utilisant les champs magnétiques ou électriques comme variables principales, ou en introduisant de nouvelles variables que sont les potentiels électriques ou magnétiques. À chacune de ces grandeurs magnétiques et électriques correspond une équation aux dérivées partielles.

Les formulations en champs présentent un inconvénient majeur, qui est la discontinuité aux interfaces et l’utilisation d’éléments d’arêtes dans la discrétisation. De plus les vecteurs ont généralement trois composantes, augmentant par-là le nombre d’inconnues, ce qui entraîne un temps de résolution plus important. Pour remédier à ces inconvénients on fait appel aux potentiels vecteur/scalaré électriques ou magnétiques. Il existe plusieurs types de potentiels, parmi les quels, on peut citer le potentiel vecteur magnétique et le potentiel scalaire électrique. La résolution des équations en potentiel vecteur magnétique, s’avère être particulièrement intéressante dans des configurations axisymétriques, car seule la composante azimuthale est non nulle. La condition de Jauge de continuité qui assure l’unicité du potentiel vecteur magnétique \(A \) est naturellement vérifiée [9] [17].

III.6.1. Formulation en potentiel vecteur magnétique

Cette formulation est basée sur l’existence d’un potentiel vecteur magnétique \(\vec{A} \) issu de l’équation (III.3) tel que :

\[
\vec{B} = \vec{rot}(\vec{A}) . \tag{III.18}
\]
La combinaison des équations (II.2) et (II.5) conduit à :
\[\nabla \wedge (\vec{E} + \frac{\partial \vec{A}}{\partial t}) = 0 \]
(III.19)

La relation (III.6) nous permet de déduire qu’il existe un potentiel électrique scalaire \(V \) tel que :
\[\vec{E} = -\frac{\partial \vec{A}}{\partial t} (\text{grad} V) \]
(III.20)

À partir des équations (III.4), (III.5), (III.7) nous pouvons écrire :
\[\text{rot} \left(\frac{1}{\mu} \text{rot} (\vec{A}) \right) = \begin{cases} -\sigma \left(\frac{\partial \vec{A}}{\partial t} \right) - \sigma (\text{grad} V) & \text{équation magnétodynamique} \\ -\sigma \left(\frac{\partial \vec{A}}{\partial t} \right) & \text{équation magnétodynamique sans source} \\ -\sigma (\text{grad} V) & \text{équation magnétostatique avec source} \\ 0 & \text{équation magnétostatique sans source} \end{cases} \]
(III.21)

L’équation (III.8) représente la formulation magnétodynamique en terme de \(\vec{A} \) tenant compte du terme source.

III.6.2. Conditions de Jauge

Les champs électromagnétiques définis par l’ensemble des équations de Maxwell ne sont pas uniques. En effet les champs à divergence sont définis à un rotationnel près et les champs à rotationnel sont définis à un gradient près. Il convient donc d’imposer une condition supplémentaire afin d’assurer l’unicité de la solution issue de la résolution du système d’équations (III.8),(III.11) Cette condition, appelée condition de Jauge est généralement exprimée sous deux formes [6].

\[\text{div} (\vec{A}) = 0 \quad \text{Jauge de Coulomb} \]
(III.25)
\[\text{div} (\vec{A}) + \kappa \frac{\partial V}{\partial t} = 0 \quad \text{Jauge de Lorenz} \]
(III.26)

III.6.3. Formulation bidimensionnelle en potentiel vecteur magnétique

Le terme à gauche de l’équation (III.8) s’écrit :
\[\left\{ \begin{array}{l} \text{rot} \left(v \text{rot} (\vec{A}) \right) = -\text{div} \left(v \text{grad} \vec{A} \right) + \text{grad} \left(v \text{div} \vec{A} \right) \\ v = \frac{1}{\mu} \end{array} \right\} \]
(III.27)

En adoptant la condition de Jauge de Coulomb donnée par (III.25) l’équation (III.27) devient :
\[\text{rot} \left(v \text{rot} (\vec{A}) \right) = -\text{div} \left(v \text{grad} \vec{A} \right) = -\sigma \left(\frac{\partial \vec{A}}{\partial t} \right) + \vec{j_s} \]
(III.28)

Si on considère que la source est harmonique sinusoïdale l’équation (III.27) s’écrit :
\[-\text{div} \left(v \text{grad} \vec{A} \right) + \sigma j_0 \vec{A} = \vec{j_s} \]
(III.29)

III.6.3.1. Formulation 2D cartésien

Dans le cas d’un problème 2D cartésien \((x,y)\) le potentiel vecteur magnétique \(\vec{A} \) et la densité de courant \(\vec{j} \) n’ayant qu’une seule composante suivant oz. Ces derniers sont de la forme :
\[\vec{A} = (0,0,A_z) \quad \text{et} \quad \vec{j} = (0,0,j_{sz}). \]
CHAPTER N° III

En coordonnées cartésiennes nous avons :

\[
\operatorname{rot}(\vec{A}) = \begin{bmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial A_z}{\partial x} & \frac{\partial A_z}{\partial y} & A_z \\
0 & 0 & 0
\end{bmatrix}
\]

(III.30)

\(\vec{e}_i, \vec{e}_j, \vec{e}_k\) : Vecteurs unitaires.

\[
\operatorname{rot}(\vec{A}) = [\frac{\partial (A_z)}{\partial y}] \vec{e}_i + [\frac{\partial (A_z)}{\partial x}] \vec{e}_j
\]

(III.31)

\[
\operatorname{rot}(v \operatorname{rot}(\vec{A})) = \left[-\frac{\partial}{\partial x} \left(v \frac{\partial (A_z)}{\partial x}\right) - \frac{\partial}{\partial z} \left(v \frac{\partial (A_z)}{\partial y}\right)\right] \vec{e}_z
\]

(III.32)

L’équation (II.16) devient :

\[
-\frac{\partial}{\partial x} \left(v \frac{\partial (A_z)}{\partial x}\right) - \frac{\partial}{\partial y} \left(v \frac{\partial (A_z)}{\partial y}\right) = -\sigma j \omega A_z + j_{sz}
\]

(III.33)

III.6.3.2. Formulation 2D axisymétrique

Dans le cas d’un problème 2D axisymétrique \((r,z)\) le potentiel vecteur magnétique \(\vec{A}\) et la densité de courant \(j\) n’ayant qu’une seule composante azimutale.

\(\vec{A} = (0, A_\theta, 0)\) et \(j = (0, j_{s\theta}, 0)\).

En coordonnées cylindriques axisymétriques nous avons :

\[
\operatorname{rot}(\vec{A}) = \frac{1}{r} \begin{bmatrix}
\frac{\partial}{\partial r} & r \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
\frac{\partial A_\theta}{\partial r} & 0 & 0 \\
0 & r A_\theta & 0
\end{bmatrix}
\]

(III.34)

\[
\operatorname{rot}(v \operatorname{rot}(\vec{A})) = \left[-\frac{\partial}{\partial r} \left(r \frac{\partial (A_\theta)}{\partial r}\right) - \frac{\partial}{\partial z} \left(r \frac{\partial (A_\theta)}{\partial z}\right)\right] \vec{e}_\theta
\]

(III.35)

L’équation (III.16) devient :

\[
-\frac{\partial}{\partial z} \left(r \frac{\partial (A_\theta)}{\partial z}\right) - \frac{\partial}{\partial r} \left(r \frac{\partial (A_\theta)}{\partial r}\right) = -\sigma j \omega A_\theta + j_{s\theta}
\]

(III.36)

III.6.4. Les conditions aux limites

Les valeurs d’un champ \(A\) à la frontière du domaine satisfont principalement deux relations simples. Le champ peut être soit de valeur connue, soit normal à la surface, ce qui de traduit par :

\[
A|_r = A_0 \quad \text{Condition de Dirichlet} \quad \text{(III.37)}
\]

\[
\frac{\partial A}{\partial n}|_r = A_0 \quad \text{Condition de Neumann} \quad \text{(III.38)}
\]

Les conditions de Dirichlet et de Neumann sont dites homogènes si les valeurs imposées \(A_0\) sont nulles. Elles sont dites non homogènes dans le cas contraire.

III.7. Méthodes de résolution

L’utilisation des méthodes numériques de discrétisation pour la résolution des équations mathématiques établies, consiste à ramener la résolution des équations aux dérivées partielles dans le domaine d’étude, compte tenu des conditions aux limites, à celle d’un système d’équations algébriques dont la solution donne les valeurs et la distribution des grandeurs recherchées. Parmi ces méthodes on
trouve la méthode aux différences finies, la méthode des volumes finis et la méthode des éléments finis. La méthode des éléments finis est sans doute la plus utilisée car elle est mieux adaptée pour traiter les géométries complexes et les milieux non linéaires [14].

III.7.1. Principe de la méthode des éléments finis

Dans les formulations présentées, il s’agit de résoudre des équations aux dérivées partielles sur le domaine Ω, auxquelles sont associées des conditions aux limites sur la frontière Γ. La méthode des éléments finis ne s’applique pas directement pour la résolution des équations aux dérivées partielles, mais à une formulation intégrale du problème, en utilisant l’une des deux approches suivantes :

- **La méthode variationnelle** exige la connaissance au préalable de la fonctionnelle d’énergie du système à étudié, elle s’exprime par :
 \[
 F(A) = \int_{\Omega} L \, d\Omega
 \]
 \(L = W_c - W_p\) : Lagrangien construit à partir de la différence entre l’énergie cinétique et l’énergie potentielle du système à étudier.

- **La méthode des résidus pondérés ou méthode projective** qui consiste à minimiser le résidu induit par l’approximation de la fonction inconnue. C’est une méthode plus générale, son application ne nécessite pas la connaissance de la fonctionnelle d’énergie du système, elle traite directement l’équation aux dérivées partielles qu’on veut résoudre. L’équation à résoudre étant :
 \[
 \frac{\partial F(A)}{\partial A_1} = 0 \iff \frac{\partial F(A)}{\partial A_1} = \frac{\partial F(A)}{\partial A_2} = \cdots = \frac{\partial F(A)}{\partial A_n} = 0
 \]
 \(A_i\) : Inconnu au nœud \(i\) du domaine.
 \(n\) : Nombre de nœuds du domaine d’étude.

L’inconnue A du problème est approximée sur les éléments de maillage par la fonction d’interpolation α_j telle que :

\[
A_i^e = \sum_j \alpha_j \cdot A_j
\]

\(\alpha_j\) : dépend des coordonnées des nœuds correspondant à chaque élément de maillage.

Ces méthodes portent sur l’analyse du champ magnétique rayonné par le dispositif, grandeur qui à l’heure actuelle n’est que très peu exploitée. En effet, tout système électromécanique crée dans son environnement proche un champ magnétique. Il semble donc naturel de penser que tout défaut, intervenant à l’intérieur du système, aura nécessairement des répercussions en terme de champ rayonné. Le champ magnétique est la grandeur fondamentale de tout système électrotechnique. Il assure la conversion de l’énergie et la cause première de tous les phénomènes physiques intervenant dans le dispositif.

- **La discrétisation du domaine** :

Afin de simplifier la définition des éléments de forme complexe, on introduit la notion d’élément de référence. Cela permet de ne définir qu’une seule fois, pour chaque type d’élément, les fonctions d’interpolation.

Pour notre cas qui est l’élément triangulaire linéaire, l’élément de référence est tel que donné dans la figure (III.2.d).

III.7.2. Choix du maillage

Le choix d’un maillage est une étape importante pour pratiquer cette méthode. Il s’agit d’un découpage de l’espace selon un maillage. D’après le contexte, plusieurs formes d’un maillage sont possibles telles que maillage carré, triangulaire. Et il est à noter que quelque soit la forme de maillage, plus ce maillage est resserré, plus la solution que l’on obtient sera précise et proche du résultat réel. Également, le calcul numérique devient plus complexe.

Avec les éléments de bases sont :

Une dimension :

Pour une dimension :

a) élément linéaire

b) Quadratique

c) Cubique

Pour deux dimensions :

d) élément linéaire
e) Quadratique
ff) Cubique

Figure III. 2 éléments classiques en une et deux dimensions.

Figure III. 3 éléments de référence triangulaire linéaire.
Deux dimensions :

Trois dimensions :

La fonction d'interpolation est obtenue à partir du tringle de Pascal donné ci-dessous :

\[
\begin{array}{cccc}
1 & x & y & \cdots \\
& x^2 & xy & y^2 & \cdots \\
& x^3 & x^2y & xy^2 & y^3 & \cdots \\
& \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

Ces fonctions sont construites de telle sorte à obéir à deux principes :

1) Principe de l'état complet :
- Le nombre de termes de la fonction doit être égal au nombre de nœuds de l'élément.
- La fonction doit contenir un terme constant.

2) Principe de compatibilité :
Celui-ci est explicité par la continuité de la fonction. Dans le cas d'un élément triangulaire linéaire, la fonction d'interpolation est donnée par :

\[
u(x, y) = a.x + b.y + c
\]

(III.4)
III.7.4. Fonction d’approximation sur l’élément

Dans le cas d’élément triangulaire linéaire, approximation d’une fonction $u(x,y)$ de valeur u_1, u_2 et u_3 respectivement aux sommets 1, 2 et 3, est de la forme suivante :

$$u(x, y) = [N_1(x,y) \ N_2(x,y) \ N_3(x,y)] \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$ \hspace{1cm} \text{(III.5)}

Avec :

$$N_1(x,y) = \frac{1}{2.T} \cdot [(y_3 - y_2) \cdot (x_2 - x) - (x_3 - x_2) \cdot (y_2 - y)]$$ \hspace{1cm} \text{(III.6)}

$$N_2(x,y) = \frac{1}{2.T} \cdot [(y_1 - y_3) \cdot (x_3 - x) - (x_1 - x_3) \cdot (y_3 - y)]$$ \hspace{1cm} \text{(III.7)}

$$N_3(x,y) = \frac{1}{2.T} \cdot [(y_2 - y_1) \cdot (x_1 - x) - (x_2 - x_1) \cdot (y_1 - y)]$$ \hspace{1cm} \text{(III.8)}

Où T est la surface du triangle décrit par le sommet.

$N(x,y)$: fonction d’interpolation.

On remarque que :

$$N_1(x,y) = 1$$
$$N_2(x,y) = 0$$
$$N_3(x,y) = 0$$

- Organigramme de calcul par éléments finis :

Pour l’implémentation du modèle sous environnement MATLAB, on procédera à plusieurs étapes pour définir la solution de l’équation décrite précédemment citées peuvent se résumer sous la forme de l’organigramme suivant :
Dans ce chapitre, nous avons présenté les équations de Maxwell, sur la base desquelles tous les phénomènes électromagnétiques peuvent être modélisés. Les équations générales régissant les phénomènes électromagnétiques sont décrites par des équations aux dérivées partielles. La résolution de ces équations permet de connaitre l’évolution du champ en tout point de l’espace. Nous nous sommes intéressé d’une façon particulière aux modèles magnétostatique et magnétodynamique qui sont obtenus à l’aide du potentiel vecteur magnétique. Ces équations peuvent être résolues par des méthodes analytiques ou méthodes numériques ou bien semi-analytiques. Parmi ces méthodes, on utilise la méthode des circuits électriques magnétiquement couplés, et un modèle numérique basé sur une approche fondé sur les éléments finis qui prend en compte la non linéarité et l’anisotropie des matériaux, les grandes lignes de ces deux méthodes ont été présentées [15].
CHAPITRE N° IV

Présentation du logiciel COMSOL et résultats de simulation.
IV.1. Introduction

Après avoir présenté dans les sections précédentes l’état de l’art sur les champs magnétiques générés par des dispositifs électrotechniques les plus répondus, et la présentation des modèles analytiques et les différentes méthodes numériques de résolution, nous passons dans ce chapitre à la phase la plus importante dans n’importe quelle étude qui représente l’exploitation de ces différentes données afin d’aboutir au but préalablement tracé qui est l’étude numérique des champs magnétiques générés par ces dispositifs. L’étude de ces champs peut servir à l’évaluation d’éventuels effets sur l’environnement voisin et plus particulièrement sur le manipulateur qui est l’homme. Dans cette assertion, le présent chapitre donne une idée sur le logiciel de simulation utilisé Comsol multiphysics ainsi que les différents résultats de simulation obtenus.

IV.2. Présentation du Comsol

Le logiciel Comsol Multiphysics, anciennement appelé FEMLab, est avant tout un outil de résolution d’équations aux dérivées partielles par éléments finis. Sa particularité est de disposer d’une base de données constituée d’équations permettant de modéliser les différents phénomènes physiques, comme l’électrostatique, l’écoulement de fluides ou encore la déformation des matériaux.

Développé initialement comme une Toolbox de Matlab, il dispose aujourd’hui de son propre environnement graphique permettant à la fois le dessin des géométries et l’affichage de résultats en post-traitement.

![Figure VI.1 Logiciel COMSOL MULTIPHYSICS.](image)

Sa spécificité est également résidé dans son aptitude à coupler les différentes équations aux dérivées partielles EDP, de manière à décrire des phénomènes multiphysiques, particulièrement adapté au micro-onde. Il est ainsi possible d’obtenir la déformation d’une membrane due à la pression dans un

IV.3. Éléments clés de la simulation

Notre problème est relativement simple à poser. La facilité de prise en main et d’utilisation de COMSOL MultiphysicsTM ne nécessite pas de présentation particulière. Nous souhaitons cependant attirer l’attention du lecteur sur quelques points essentiels de notre simulation.

Nous avons fait le choix de ne pas utiliser les expressions analytiques des champs de forces afin de prendre en compte les effets de bord des configurations magnétiques. Notre choix se justifie également par la rapidité de la simulation de la partie magnétique par rapport à la partie mécanique.

Par défaut, COMSOL MultiphysicsTM utilise des éléments finis de Lagrange quadratiques en magnétostatique. Par conséquent, nous trouvons des forces nulles lorsque nous les calculons à partir du champ magnétique. Il est impératif d’utiliser la formulation en potentiel-vecteur.

La résolution de notre problème nécessite un réglage particulier du maillage. Le problème de magnétostatique est tout d’abord résolu. Les résultats des forces magnétiques volumiques sont enregistrés et utilisés pour notre problème. En effet, les deux problèmes sont découplés.

Nos simulations ont été menées sur les versions 4.3 de COMSOL MultiphysicsTM. L’ordinateur utilisé est équipé d’un processeur Intel® Celeron® CPU 1017U cadencé à 1.60 GHz et équipé de 2 Go de RAM. Cette configuration est bien adaptée pour la simulation de géométries en 2D sous COMSOL MultiphysicsTM.

IV.4. Dispositifs et configurations étudiées

Comme déjà cité précédemment, nous avons choisi d’étudier les champs générés par les quelques exemples de dispositifs électrotechniques, à savoir :

- Une bobine à noyau de fer
- Chauffage à induction
- Transformateur monophasé cuirassé.

Nous avons choisi aussi d’étudier les variations du champ et l’induction magnétiques selon les deux directions horizontale en fonction de la position x du point de calcul ou bien la position y (figure IV.2).
IV.4.1. Bobine à noyau de fer - Influence de l’épaisseur d’entrefer

IV.4.1.1. Les graphes de simulation

Nous commençons notre étude par le cas d’une bobine à noyau de fer qui permet d’étudier l’effet de l’épaisseur d’un entrefer, sur la répartition du champ dans l’air.

L’induction magnétique générée par ce dispositif (bobine à noyau de fer) a été calculée le long de deux directions (figure IV.2) pour une épaisseur d’entrefer comprise entre 1mm et 10mm. Les courbes ci-dessous donnent les répartitions du champ magnétique et de l’induction.

La première configuration (Figure IV.3) traite le cas d’un noyau homogène sans entrefer avec une perméabilité $\mu = 1000$. Les figures (IV.4) à (IV.9) donnent les résultats de simulations pour un entrefer variable de $e = 1mm$ à $e = 10mm$.

Figure IV.2 Schéma simplifier pour la direction du calcul.
Figure IV.3 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour le circuit magnétique sans entrefer.

Figure IV.4 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 1mm.

Figure IV.5 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 2mm.
Figure IV.6 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 4mm.

Figure IV.7 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 6mm.

Figure IV.8 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 8mm.
CHAPITRE N° IV

Figure IV.9 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour un entrefer de 10mm.

IV.4.1.2. Induction générée

Les courbes ci-dessous donnent la variation générée le long de la direction x pour différents cas ; noyau sans entrefer et puis noyau avec différents épaisseurs d’entrefer.

Sans entrefer.

Pour un entrefer de 1mm.

Pour un entrefer de 2mm.

Pour un entrefer de 4mm.
Pour un entrefer de 6mm.

Pour un entrefer de 8mm.

Pour un entrefer de 10mm.

Figures IV.10 Induction générée le long de la direction x.

A partir de ces figures, nous constatons que l’induction générée porte une valeur élevée lorsque le point de calcul est situé très proche du dispositif puis cette induction diminue au fur et à mesure qu’on s’éloigne jusqu’à où il s’éteint complètement. Cette induction est inversement proportionnelle à la distance.

Dans les figures ci-dessous (IV.11), nous avons tracé les variations des l’induction mais cette fois suivant l’axe y, nous constatons que pratiquement nous obtenons des courbes similaires mais des valeurs différentes.

Sans entrefer.

Pour un entrefer de 1mm.
Pour un entrefer de 2mm.

Pour un entrefer de 4mm.

Pour un entrefer de 6mm.

Pour un entrefer de 8mm.

Pour un entrefer de 10mm.

Figures IV.11 Induction générée le long de la direction y.

Figures IV.12. Induction générée en fonction de la distance pour différentes épaisseur d'entrefer.

IV.4.1.3. Interprétation des résultats

A partir des résultats présentés pour la bobine à noyau de fer, on peut observer qu'à proximité de l'entrefer les courbes sont très bien séparées les unes des autres. Par contre, dès qu'on s'éloigne de l'entrefer, les courbes se rapprochent et deviennent rapidement difficiles à distinguer. Une analyse plus attentive montre qu’au dehors de l'entrefer, le champ augmente faiblement avec l’épaisseur d’entrefer de celui-ci.

Les simulations que l’on vient de faire nous indiquent que l’influence de l’épaisseur de l’entrefer sur le champ magnétique dans l’air est relativement faible (de l’ordre de quelque %). Par contre, on observe une grande variation si l’on élimine complètement l’entrefer (figure IV.11). On en déduit que l’influence de l’entrefer sur le champ dans l’air est d’autant plus élevée, que son épaisseur est réduite.

Par exemple, dans le tableau suivant est reportée la valeur de l’induction calculée à l’intérieur de l’entrefer :

<table>
<thead>
<tr>
<th>Entrefer (mm)</th>
<th>Induction [μT] à l’entrefer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm</td>
<td>49.99 × 10^{-3}</td>
</tr>
<tr>
<td>2 mm</td>
<td>27.62 × 10^{-3}</td>
</tr>
<tr>
<td>4 mm</td>
<td>14.60 × 10^{-3}</td>
</tr>
<tr>
<td>6 mm</td>
<td>9.93 × 10^{-3}</td>
</tr>
<tr>
<td>8 mm</td>
<td>7.53 × 10^{-3}</td>
</tr>
<tr>
<td>10 mm</td>
<td>6.07 × 10^{-3}</td>
</tr>
</tbody>
</table>

Tableau IV.1 l’induction calculée à l’intérieur de l’entrefer.
IV.4.2. Le chauffage à induction - Influence de la perméabilité

Le deuxième dispositif étudié sera le chauffage à induction dont les dimensions sont données sur l’annexe A2. La disposition des axes d’étude est schématisée par la figure (IV.13).

Pour étudier l’influence des propriétés magnétiques des matériaux entrant dans la constitution des circuits magnétiques des dispositifs, on a calculé le champ généré par le chauffage par induction, en faisant varier la perméabilité relative de la charge μ_{ch} entre 100 et 10000. Dans les figures ci-dessous (figure IV.14 à IV.20), nous donnons les répartitions de l’induction et champ magnétiques du chauffage à induction pour différentes valeurs de perméabilité de la charge.
CHAPITRE N° IV

Figure IV.14 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=100$.

Figure IV.15 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=200$.

Figure IV.16 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=400$.
CHAPITRE N° IV

Figure IV.17 répartition des champs magnétiques à gauche et l'induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=1000$.

Figure IV.18 répartition des champs magnétiques à gauche et l'induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=2000$.

Figure IV.19 répartition des champs magnétiques à gauche et l'induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=4000$.
Figure IV.20 répartition des champs magnétiques à gauche et l'induction magnétique à droite pour une perméabilité de la charge $\mu_{ch}=10000$.

IV.4.2.2. Variation de l’induction générée

Comme précédemment, nous avons tracé la variation de l’induction magnétique le long de la distance horizontale x (Figure IV.21) et suivant la distance y (Figure IV.22). Ces variations sont prises pour différentes valeurs de perméabilité.

Pour une perméabilité de la charge $\mu_{ch}=100$.
Pour une perméabilité de la charge $\mu_{ch}=400$.

CHAPITRE N° IV
CHAPITRE N° IV

Pour une perméabilité de la charge $\mu_{ch}=1000$. Pour une perméabilité de la charge $\mu_{ch}=2000$. Pour une perméabilité de la charge $\mu_{ch}=4000$. Pour une perméabilité de la charge $\mu_{ch}=10000$.

Figures IV.21 Induction générée le long de la direction x.

Pour une perméabilité de la charge $\mu_{ch}=100$. Pour une perméabilité de la charge $\mu_{ch}=400$. Pour une perméabilité de la charge $\mu_{ch}=1000$. Pour une perméabilité de la charge $\mu_{ch}=2000$.
Pour une perméabilité de la charge $\mu_{ch}=4000$.

Pour une perméabilité de la charge $\mu_{ch}=10000$.

Figures IV.22 Induction générée le long de la direction y.

La figure IV.23, nous a permis d’examiner l’influence de la perméabilité sur l’induction magnétique générée par le chauffage à induction le long de la direction d’éloignement du dispositif.

Figures IV.23 Induction magnétique pour différentes valeurs de la perméabilité.

IV.4.2.3. Interprétations des résultats

D’après ces résultats nous constatons que les courbes représentatives des différents perméabilités sont séparées les unes des autres lorsque on se trouve proche du dispositif, puis elles deviennent confondues lorsque on s’éloigne. Le champ est plus sensible aux variations de la perméabilité à une distance rapprochée du dispositif, alors qu’à grande distance les courbes se rapprochent. En particulier, à partir d’environ 20 cm les courbes correspondant à $\mu_{ch} \geq 1000$ sont confondues. On retrouve le même comportement si l’on calcule le champ dans d’autres directions, et pour les autres dispositifs. L’induction est relativement importante pour une perméabilité faible et elle diminue lorsque la perméabilité augmente mais le taux de diminution reste limité.

Ces informations sont très intéressantes, car dans la pratique on connaît rarement avec précision les caractéristiques des matériaux, d’autant plus que celles-ci peuvent varier en fonction de la température.
CHAPITRE N° IV

De plus, si l’on souhaite connaître le champ généré par un système électromagnétique dans une région où l’on sait a priori que les caractéristiques des matériaux n’ont que peu d’influence, on pourrait se contenter d’un calcul linéaire, ou bien utiliser le principe de superposition, si les sources du champ sont multiples.

Une explication intuitive de ce comportement est que lorsque la perméabilité est suffisamment élevée, le champ à l’interface entre l’air et le matériel magnétique est presque orthogonal. Donc on peut penser à éliminer du domaine de résolution le matériau magnétique, et à imposer un champ normal à l’interface entre celui-ci et l’air : on parviendrait ainsi à calculer l’état-limite vers lequel tend le champ magnétique lorsque la perméabilité augmente indéfiniment.

IV.4.3. Le transformateur cuirassé

Le transformateur monophasé étudié porte trois colonnes, la colonne centrale porte le bobinage primaire et secondaire (N₁=175 spires et N₂=38 spires), les dimensions sont indiquées au niveau de l’annexe [figure (A.3)].

![Figure IV.24 Schéma simplifier pour la direction du calcul.](image)

IV.4.3.1. Répartitions d’induction et champ magnétiques

Les figures ci-dessous donnent les répartitions de l’induction et du champ magnétique pour un transformateur cuirassé pour différents niveaux de tensions, ces simulations sont obtenues par l’environnement Comsol Multiphysics 4.3
Figure IV.25 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une tension de 0.5 kV.

Figure IV.26 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une tension de 1 kV.

Figure IV.27 répartition des champs magnétiques à gauche et l’induction magnétique à droite pour une tension de 2 kV.
IV.4.3.2. Courbes d’induction

Les figures (IV.29) et (IV.30) donnent les variations de l’induction générée à partir du transformateur cuirassé pour différentes tensions d’alimentation, ces variations sont prises selon les deux directions x et y indiquées au niveau de la figure (IV.24).

Pour une tension de 0.5 kV.

Pour une tension de 1 kV.

Pour une tension de 2 kV.

Pour une tension de 3 kV.
Figure IV.29 Induction générée le long de la direction x.

Pour une tension de 0.5 kV.

Pour une tension de 1 kV.

Pour une tension de 2 kV.

Pour une tension de 3 kV.

Figure IV.30 Induction générée le long de la direction y.

Figures IV.31 Variation de l'induction en fonction de la distance pour différentes valeurs de la tension.
IV.4.3.3. Interprétation des résultats

D’après les résultats, nous constatons que l’induction magnétique et le champ magnétique sont importantes pour des tensions élevées à proximité du dispositif, le champ devient faible au fur et à mesure qu’on s’éloigne. A partir d’une distance de 30 cm les courbes deviennent confondues pour les différents niveaux de tension appliqués.

IV.5. Conclusion

Dans ce chapitre, nous avons étudié le champ magnétique généré au voisinage des dispositifs électrotechniques. Le modèle 2D permet de calculer à moindre coût les champs de fuite générés par des systèmes rayonnants du type circuit magnétique + bobinages + entrefer. Ce modèle, qui s’appuie sur le concept de charges magnétiques fictives pour la modélisation du champ généré par le matériau aimanté (champ réduit). Nous avons commencé par le cas de la bobine à noyau de fer qui nous a permis d’examiner l’influence de l’entrefer et son épaisseur sur le champ au voisinage ; l’influence de l’entrefer sur le champ dans l’air est d’autant plus élevée, que son épaisseur est réduite.

Pour étudier l’influence des propriétés magnétiques des matériaux entrant dans la constitution des circuits magnétiques des dispositifs, on a calculé le champ généré par le chauffage par induction, en faisant varier la perméabilité relative de la charge entre 100 et 10000. Le champ est plus sensible aux variations de la perméabilité à une distance rapprochée du dispositif, alors que pour une grande distance les courbes se rapprochent.
Conclusion générale

Le travail présenté dans ce mémoire concerne l’étude du champ généré par les dispositifs électrotechniques, ce champ se résume beaucoup plus aux fuites du circuit magnétique. Dans une première partie, nous avons mis en rappel les principes fondamentaux concernant le champ électromagnétique, et l’influence que peut jouer ce champ sur l’environnement surtout au voisinage, vu que ce champ s’affaiblit au fur et à mesure qu’on s’éloigne du dispositif émetteur. Différentes sources de champ de fuites sont étudiées à savoir la bobine à noyau de fer, le transformateur et les machines tournantes. Le champ généré ne constitue pas toujours un inconvénient vu l’existence de méthodes de diagnostic basées sur les mesures de ce champ à partir des capteurs.

L’étude analytique du champ de fuite reste un problème délicat à cause des phénomènes non linéaires dont elle est le siège et de l’imbrication de ces problèmes.

Le logiciel Comsol Multiphysics, anciennement appelé FEMLab, est avant tout un outil de résolution d’équations aux dérivées partielles par éléments finis. Sa particularité est de disposer d’une base de données constituée d’équations permettant de modéliser les différents phénomènes physiques, comme l’électrostatique, l’écoulement de fluides ou encore la déformation des matériaux. Par défaut, COMSOL MultiphysicsTM utilise des éléments finis de Lagrange quadratiques en magnétostatique. La résolution nécessite un réglage particulier du maillage. Le problème de magnétostatique est tout d’abord résolu. Les résultats des forces magnétiques volumiques sont enregistrés et utilisés pour notre problème.

Le modèle 2D permet de calculer à moindre coût les champs de fuite générés par des systèmes rayonnants du type circuit magnétique + bobinages + entrefer. Ce modèle, qui s’appuie sur le concept de charges magnétiques fictives pour la modélisation du champ généré par le matériau aimanté. Dans cette étude, nous avons choisi d’étudier les champs générés par les quelques dispositifs électrotechniques, à savoir : Une bobine à noyau de fer, Chauffage à induction et Transformateur monophasé cuirassé. Les variations du champ et de l’induction magnétiques sont étudiées selon deux directions. Le cas de la bobine à noyau de fer a permis d’examiner l’influence de l’entrefer et son épaisseur sur le champ au voisinage ; l’influence de l’entrefer sur le champ dans l’air est d’autant plus élevée, que son épaisseur est réduite.
CONCLUSION GENERALE

La variation de la perméabilité relative de la charge d’un chauffage à induction a permis d’étudier l’influence des propriétés magnétiques des matériaux entrant dans la constitution des circuits magnétiques des dispositifs. Il a été constaté que le champ est plus sensible aux variations de la perméabilité à une distance rapprochée du dispositif.

L’étude du champ généré par les dispositifs électrotechniques a montré que ces champs restent faibles et ne constituent aucun danger pour l’homme mais ces champs peuvent influencer certains appareils de mesure sensibles ou tout autre dispositif se trouvant au voisinage. La connaissance de la distance à partir de laquelle le champ devient négligeable est importante pour des besoins de précaution.
Annexe

A.1 Bobine à noyau de fer

\[\mu_{r\text{noy}} = 1000. \]
\[NI = 100 \, A. \]
\[f = 50 \, Hz. \]

Figure A.1. Les dimensions de la bobine à noyau de fer.

A.2 Le chauffage à induction

\[\mu_{r\text{noy}} = 1000. \]
\[NI = 500 \, A. \]
\[f = 50 \, Hz. \]

Figure A.2. Les dimensions de la bobine à noyau de fer.
ANNEXE

A.3 Le transformateur cuirassé

Figure A.3. Les dimensions du transformateur cuirassé.
Références bibliographiques

[10] CEDRAT. 2D/3D FEM software products developed by INPG/LEG and CEDRAT.

MEMOIRE DE FIN D’ETUDES EN VUE DE L’OBTENTION DU DIPLÔME DE MASTER EN GENIE ELECTRIQUE SPECIALITE : INGENIERIE DES SYSTEMES ELECTROMECANIQUES

Proposé et dirigé par : Mr. CHOUCHOU Abd Elmadjid
Présenté par : LOUBAZID Youcef

Thème :
Caractérisation numérique du champ magnétique généré par des systèmes électrotechniques

Résumé :
Le travail demandé dans le cadre de ce thème concerne l’étude du champ magnétique généré par les dispositifs électrotechnique les plus utilisés dans le domaine de l’énergie électrique, ce champ est généralement dû aux fuites électromagnétiques extérieures appelés sources de champs. Dans ce mémoire, nous avons donné les principes de base concernant le champ magnétique et les sources de champ, ainsi que les équations générales régissant les phénomènes électromagnétiques qui sont décrites par des équations aux dérivées partielles. La simulation numérique sous l’environnement Comsol Multiphysics 4.3 nous a permis d’étudier le champ magnétique généré au voisinage des dispositifs ainsi que l’influence de l’épaisseur d’un entrefer dans le cas d’une bobine à noyau de fer, la perméabilité magnétique pour un chauffage à induction et le niveau de tension appliqué pour un transformateur cuirassé.

Mots clés
Champ magnétiques B.F, champs de fuite, modélisation, éléments finis.

N° d’ordre : ISE-112